因式分解的方法教案

          時間:2021-03-30 11:23:43 教案 我要投稿

          因式分解的方法教案

            因式分解的方法教案【一】

            教學目標

          因式分解的方法教案

           、僭谡莆樟私庖蚴椒纸庖饬x的基礎上,會運用平方差公式和完全平方公式對比較簡單的多項式進行因式分解.

           、谠谶\用公式法進行因式分解的同時培養學生的觀察、比較和判斷能力以及運算能力,用不同的方法分解因式可以提高綜合運用知識的能力.

           、圻M一步體驗“整體”的思想,培養“換元”的意識.

            教學重點與難點

            重點:運用完全平方公式法進行因式分解.

            難點:觀察多項式的特點,判斷是否符合公式的特征和綜合運用分解的方法,并完整地進行分解.

            教學準備

            要求學生對完全平方公式準確理解.

            教學設計

            問題:你能將多項式a2+2ab+b2和a2-2ab+b2因式分解嗎?這兩個多項式有什么特點?

            建議:由于受到前面用平方差公式分解因式的影響,學生對于這兩個多項式因式分解比較容易想到用完全平方公式,學生容易接受,教師要把重點放在研究公式的特征上來.

            注:可采用讓學生自主討論的方式進行教學,引導學生從多項式的項數、每項的特點、整個多項式的特點等幾個方面進行研究.然后交流各自的體會.

            把多項式向公式的方向變形和轉化.

            例5分解因式

            (1)16x2+24x+9 (2)-x2+4x-42

            注:訓練學生運用完全平方公式分解因式,要盡可能地讓學生說和做,引導學生把多項式與公式進行比較找出不同點,把多項式向公式的方向轉化.

            例6分解因式

            (1)3ax2+6ax+3a2

            (2)(a+b)2-12(a+b)+36

            注:學生仔細觀察多項式的特點,教師適當提醒和指導,要從公式的形式和特點上進行比較.(可把a+b看作一個整體,設a+b=)

            第2小題注意滲透換整體和換元的思想.

            鞏固練習

            教科書第170頁的練習題.

            小結提高

            1.舉一個例子說說應用完全平方公式分解因式的多項式應具有怎樣的特征.

            2.談談多項式因式分解的思考方向和分解的步驟.

            3.談談多項式因式分解的注意點.

            注:對這些問題進行回顧和小結能從大的方面把握因式分解的方向和培養觀察能力.

            布置作業

            1.必做題:教科書第171頁習題15.4第4題,第5題;

            2.選做題:教科書第171頁第10題;

            因式分解的方法教案【二】

            教學目標:

            1、進一步鞏固因式分解的概念; 2、鞏固因式分解常用的三種方法

            3、選擇恰當的方法進行因式分解 4、應用因式分解來解決一些實際問題

            5、體驗應用知識解決問題的樂趣

            教學重點:靈活運用因式分解解決問題

            教學難點:靈活運用恰當的`因式分解的方法,拓展練習2、3

            教學過程:

            一、創設情景:若a=101,b=99,求a2-b2的值

            利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

            二、知識回顧

            1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.

            判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關系)

            (1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法

            (3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解

            (5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解

            (7).2r=2(R+r) 因式分解

            2、.規律總結(教師講解): 分解因式與整式乘法是互逆過程.

            分解因式要注意以下幾點: (1).分解的對象必須是多項式.

            (2).分解的結果一定是幾個整式的乘積的形式. (3).要分解到不能分解為止.

            3、因式分解的方法

            提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法

            公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2

            4、強化訓練

            試一試把下列各式因式分解:

            (1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2

            (3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)

            三、例題講解

            例1、分解因式

            (1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)

            (3) (4)y2+y+

            例2、分解因式

            1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=

            4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=

            例3、分解因式

            1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3

            三、知識應用

            1、(4x2-9y2)(2x+3y) 2、(a2b-ab2)(b-a)

            3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2

            4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除嗎?還能被哪些整數整除?

            四、拓展應用

            1.計算:765217-235217 解:765217-235217=17(7652-2352)=17(765+235)(765-235)

            2、20042+2004被2005整除嗎?

            3、若n是整數,證明(2n+1)2-(2n-1)2是8的倍數.

            五、課堂小結:今天你對因式分解又有哪些新的認識?

          【因式分解的方法教案】相關文章:

          《因式分解的簡單應用》導學案PPT課件教案05-13

          因式分解同步的練習題05-27

          整式的乘除與因式分解測試卷07-26

          初中因式分解同步練習題05-26

          整式的乘除與因式分解練習題整合05-27

          關于因式分解課后練習題05-27

          因式分解同步練習題以及答案05-27

          教案的量化評比方法及細則11-25

          因式分解同步練習題目及答案05-27

          關于整式的乘除與因式分解課后練習題05-27

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  亚洲第一成年男人网站 | 亚洲国产日韩在线成人蜜芽 | 色五月激情中文字幕 | 日本高级黄区免费 | 亚洲日韩乱码人人爽人人澡 | 中文字幕国产原创 |