《矩形》優秀教案設計

          時間:2021-06-19 19:35:46 教案 我要投稿

          《矩形》優秀教案設計

            教學目標

          《矩形》優秀教案設計

            知識與技能:

            了解矩形的有關概念,理解并掌握矩形的有關性質.

            過程與方法:

            經過探索矩形的概念和性質的過程,發展學生合情推理意識;掌握幾何思維方法.

            情感態度與價值觀:

            培養嚴謹的推理能力,以及自主合作精神;體會邏輯推理的思維價值.

            重難點、關鍵

            重點:掌握矩形的性質,并學會應用.

            難點:理解矩形的特殊性.

            關鍵:把握平行四邊形的演變過程,遷移到矩形概念與性質上來,明確矩形是特殊的平行四邊形.

            教學準備

            教師準備:投影儀,收集有關矩形的圖片,制作教具.

            學生準備:復習平行四邊形性質,預習矩形這節內容.

            學法解析

            1.認知起點:已經學習了三角形、平行四邊形,積累了一定的經驗的基礎上學習本節課內容.

            2.知識線索:情境與操作→平行四邊形→矩形→矩形性質.

            3.學習方式:觀察、操作、感知其演變,以合作交流的學習方式突破難點.

            教學過程

            一、聯系生活,形象感知

            【顯示投影片】

            教師活動:演示平行四邊形的形狀變化的動態效果,讓學生觀察變化,引出發現。

            矩形定義:有一個角是直角的平行四邊形叫做矩形.(也就是小學學習過的長方形).

            教師活動:介紹完矩形概念后,為了加深理解也為了繼續研究矩形的'性質,拿出教具.同學生一起探究下面問題:

            問題1:改變平行四邊形活動框架,將框架夾角∠α變為90°,平行四邊形成為一個矩形,這說明平行四邊形與矩形具有怎樣的從屬關系?(教師提問)

            學生活動:觀察教師的教具,研究其變化情況,可以發現:矩形是平行四邊形的特例,是屬于平行四邊形,因此它具有平行四邊形所有性質.

            問題2:既然它具有平行四邊形的所有性質,那么矩形是否具有它獨特的性質呢?(教師提問)

            學生活動:由平行四邊形對邊平行以及剛才變角∠α為90°可以得到∠α的補角也是90°,從而得到矩形四個角都是直角.

            性質定理1:矩形的四個角都是直角.

            幾何語言:∵四邊形ABCD是矩形

            ∴∠A=∠B=∠C=∠D=90度

            評析:實際上,在小學學生已經學過長方形四個角都是90°,這里學生不難理解.

            教師活動:用橡皮筋做出兩條對角線,讓學生觀察這兩條對角線的關系,并要求學生證明(口述).

            學生活動:觀察發現:矩形的兩條對角線相等,口述證明過程是:充分利用(SAS)三角形全等來證明.

            口述:∵四邊形ABCD是矩形

            ∴∠ABC=∠DCB=90°,AB=DC

            又∵BC為公共邊

            ∴△ABC≌△DCB(SAS)

            ∴AC=BD

            性質定理2:矩形的對角線相等.

            幾何語言:∵四邊形ABCD是矩形

            ∴ AC = BD

            教師提問:

            1.圖中有幾個三角形?它們分別是什么三角形?

            2.在直角△ABC中,OB與AC之間有什么數量關系?為什么?由此你會得出什么結論?

            學生活動:觀察、思考后發現AO= AC,BO= BD,BO是Rt△ABC的中線.由此歸納直角三角形的一個性質:

            直角三角形斜邊上的中線等于斜邊的一半.

            直角三角形中,30°角所對的邊等于斜邊的一半(師生回憶).

            【設計意圖】采用觀察、操作、交流、演繹的手法來解決重點突破難點.

            二、范例點擊,應用所學

            例1如圖,矩形ABCD的兩條對角線相交于O,∠AOB=60°,AB=4cm,求矩形對角線的長.(投影顯示)

            思路點撥:利用矩形對角線相等且平分得到OA=OB,由于∠AOB=60°,因此,可以發現△AOB為等邊三角形,這樣可求出OA=AB=4cm,

            ∴AC=BD=2OA=8cm.

            【活動方略】

            教師活動:板書例1,分析例1的思路,教會學生解題分析法,然后板書解題過程

            學生活動:參與教師講例,總結幾何分析思路.

            三.隨堂練習,鞏固深化

            1.矩形具有而一般平行四邊形不具有的性質是 ( )

            A.對角相等 B.對邊相等 C.對角線相等 D.對角線互相平分

            2.判斷對錯

            (1)矩形是平行四邊形( )

            (2)矩形的兩條對角線將矩形分成四個面積相等的等腰三角形( )

            3.已知△ABC是Rt△,∠ABC=90度,

            BD是斜邊AC上的中線。

            (1)若BD=3㎝則AC= _______㎝

            (2) 若∠C=30°,AB=5㎝,則AC=_____ cm, BD=_____ ㎝.

            4.四邊形ABCD是矩形

            1.若已知AB=8㎝,AD=6㎝,

            則AC=_______㎝,OB=_______ ㎝

            2.若已知AC=10㎝,BC=6㎝,則矩形的周長=____ cm

            矩形的面積=_______

            若已知 ∠DOC=120°,AC=8㎝,則AD= _____cm

            AB= _____cm

            5.矩形的短邊長為3cm,兩對角線所成的角是60 °,則它的另一邊長是_______cm

            6. 已知矩形對角線長為4cm,一邊長為是_______ cm,則矩形的面積是________.

            四.課堂小結

            矩形定義:有一個角是直角的平行四邊形叫做矩形.

            矩形是軸對稱圖形。

            性質定理1:矩形的四個角都是直角.

            性質定理2:矩形的對角線相等.

            直角三角形斜邊上的中線等于斜邊的一半.

            五.拓展應用

            如右圖,在矩形ABCD中,DE平分∠ADC交AC于E,

            交BC于F,若∠BDF=15度,求∠COF的度數.

            六.作業

            必做題

            教與學整體設計練案《矩形第(1)課時》

            選做題

            如右圖:在ABCD矩形中AB=6cm,BC=8cm,

            將矩形折疊,使B點與點D重合,求折痕EF的長。

          【《矩形》優秀教案設計】相關文章:

          初二數學矩形教案設計09-09

          《矩形的判定》優秀的教學反思05-14

          矩形判定課件03-29

          黃金矩形課件03-19

          矩形性質說課稿02-20

          矩形的性質說課稿11-02

          《矩形的性質》說課稿11-04

          《矩形》的教學反思07-04

          《矩形》教學設計06-08

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  在线脚交足免费播放 | 久久福利网站免费视频 | 欧美香蕉免费在线视频观看 | 热99精品只有这里精视频 | 婷婷久久人人爽人人爽 | 日韩欧洲亚洲美三区中文幕 |