拋物線性質的探究教案

          時間:2021-02-10 11:13:58 教案 我要投稿

          拋物線性質的探究教案

            一、課題:拋物線性質的探究

          拋物線性質的探究教案

            二、教學對象:高三(2)

            三、教學環境:多媒體計算機網絡教室

            四、設計思想:

            圓錐曲線這一章是解析幾何的重頭戲,也是高三復習中的重點,如何做好這一章的復習?高三學生通過前二年的學習,已形成初步的知識體系,掌握了一定的分析問題和解決問題的能力,具有較強的創新精神和探究能力,在實踐中,我大膽改革傳統的“知識概括,典例講解,小結與練習”三步曲,利用幾何畫板積極實行探究性學習,激發學生獨立思考和創新的意識,讓學生有創新的機會,充分體驗成功的喜悅,開發了學生的自我潛能。

            五、教法設計:

            啟發式和探究性教學

            六、教學目標:

            在探究性學習中培養學生的創新精神和探究能力

            七、教學重點與難點分析:

            1、重點

            觀察、實踐、歸納、猜想和證明的探究過程

            2、難點

            如何引導學生進行合理的探究?

            八、教學過程設計與分析:

            1、溫故

            在計算機上,讓學生自己解決下面問題:

            設拋物線的軸和它的準線交于e點,經過焦點垂直于軸的直線交拋物線于p、q兩點,

            求證:ep⊥eq(出自人教版《平面解析幾何》課本)

            師:提問

            生:如圖,建立直角坐標系,設拋物線方程為y2=2px(p>0)

            易求出p、q、e三點坐標,由kpe·keq=—1,知ep⊥eq、

            2、思新

            師:完全正確,下面我們來進一步研究這個問題

            (怎樣研究?按照波利亞對“一般化”的解釋,所謂一般化習題條件就是指“從條件的

            一個給定集合過渡到考慮包含這個給定集合的另一個集合”它是引發數學問題猜想的重要方法之一)。

            我們把條件“垂直于軸的直線”轉化為“不垂直于軸的直線”,請大家畫幾個圖形,觀察結論“ep⊥eq”的變化,如下圖:

            高中數學(拋物線性質的探究)教學設計,標簽:高三數學說課,高中數學說課稿,,

            師:結論“ep⊥eq”還成立嗎?

            生(觀察后):不成立。

            師:圖2,圖3有什么共同特征呢?

            生:探究…(給一定時間)

            生:(有學生發現)好象直線ef

            平分∠peq

            師:直線ef真的平分∠peq嗎?我們不妨利用幾何畫板來測量∠pef和∠qef的大小(與學生一起完成)再拖動pq,很快有重大發現。(把畫板引入中學數學教學,學生主動參與討論,做‘數學實驗’,參與教學活動,他們已不再是知識的被動接受者,而是知識的主動探索者,問題的研究者)

            3、歸納發現并證明:

            設拋物線y2=2px(p>0)的'軸和拋物線的準線交于e點,過焦點f的直線交拋物線于p、

            q兩點,求證:ef平分∠peq、

            師生共同完成證明

            4、第一次表揚以勵再“探”

            數學問題中,每一個從特殊到一般的成功過渡都是一個不小的收獲,×××同學善于觀

            察,大膽猜測,富有創新。

            師:這個問題還可以發展嗎?(新一輪的“探究”開始)

            5、猜想,再次將條件一般化

            回顧證明過程,“經過焦點f的直線”這個條件起到了重要作用,這個條件談化為“經

            過拋物線軸上一點m的直線”,直線em還平分∠peq嗎?利用幾何畫板畫幾個圖形,讓學生自己探究,相互交流討論、

            教師逐步引導學生并發現:

            只要直線l和點m與原點距離相等有直線em平分∠peq

            真是這樣嗎?《畫板》先演示

            6、歸納發現并證明

            直線pq過拋物線y2=2px(p>0)軸上一點m(m,0)(m>0)交拋物線于p、

            q兩點,直線l:x=—m交x軸于e點,求證:直線em平分∠peq、

            師生共同完成證明。

            高中數學(拋物線性質的探究)教學設計,標簽:高三數學說課,高中數學說課稿,,

            7、第二次表揚以勵再“探”

            我們從課本中的一個習題,通過《畫板》不斷地演變,不斷地猜想,驗證和證明,探索

            出拋物線一個嶄新的性質,結論固然可喜,但探究過程本身給我們的啟發更深刻,那就是創新是無止境的,最明顯的問題就是:在橢圓和雙曲線中仍成立嗎?

            8、課堂小結

            附錄:cai教學結構圖

            開始

            ↓

            溫故

            ↓

            激發興趣——→思新

            ↓

            cai輔助學生探究——教師引導

            ↓

            得出重大發現—→判定,評價,表揚

            ↓

            歸納并證明

            ↓

            利用cai再探——教師引導

            ↓

            再次得出重大發現——老師評價表揚

            ↓

            證明與小結

          【拋物線性質的探究教案】相關文章:

          《拋物線及其標準方程》教案06-01

          物質性質的探究同步練習題07-29

          探究鹽的化學性質導學案12-24

          《小數的性質》教案06-09

          鹽的性質教案04-06

          小數的性質的教案11-24

          矩形的性質教案08-29

          二氧化碳性質的探究優秀教案及教學反思08-24

          探究酸和堿的化學性質的說課稿02-01

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  久久国产精品系列 | 亚洲第一视频在线观看播放 | 激情久久一区二区三区 | 一本一道久久a久久精品 | 亚洲va不卡在线看 | 亚洲青青在线视频 |