函數的極值與導數教學設計

          時間:2020-12-29 15:20:12 教學設計 我要投稿

           函數的極值與導數教學設計

            作為一名辛苦耕耘的教育工作者,總不可避免地需要編寫教學設計,借助教學設計可以提高教學質量,收到預期的教學效果。教學設計應該怎么寫才好呢?以下是小編精心整理的 函數的極值與導數教學設計,希望能夠幫助到大家。

           函數的極值與導數教學設計

            一、目標

            知識與技能:理解極大值、極小值的概念;能夠運用判別極大值、極小值的方法來求函數的極值;掌握求可導函數的極值的步驟;

            過程與方法:多讓學生舉命題的例子,培養他們的辨析能力;以及培養他們的分析問題和解決問題的能力;

            情感、態度與價值觀:通過學生的參與,激發學生學習數學的興趣。

            二、重點難點

            教學重點:極大、極小值的概念和判別方法,以及求可導函數的極值的步驟.

            教學難點:對極大、極小值概念的理解及求可導函數的極值的步驟.

            三、教學過程

            函數的贈與減、增減的快與慢以及函數的最大值或最小值等性質是非常重要的.通過研究函數的這些性質,我們可以對數量的變化規律有一個基本的了解.我們以導數為工具,對研究函數的增減及極值和最值帶來很大方便.

            四、學情分析

            我們的學生屬于平行分班,學生已有的知識和實驗水平有差距。需要教師指導并借助動畫給予直觀的認識。

            五、教學方法

            發現式、啟發式

            新授課教學基本環節:預習檢查、總結疑惑→情境導入、展示目標→合作探究、精講點撥→反思總結、當堂檢測→發導學案、布置預習

            六、課前準備

            1.學生的學習準備:

            2.教師的教學準備:多媒體課件制作,課前預習學案,課內探究學案,課后延伸拓展學案。

            七、課時安排:1課時

            八、教學過程

            (一)預習檢查、總結疑惑

            檢查落實了學生的預習情況并了解了學生的疑惑,使教學具有了針對性。

            提問

            (二)情景導入、展示目標。

            設計意圖:步步導入,吸引學生的注意力,明確學習目標。

            1、有關概念

            (1).極大值:一般地,設函數f(x)在點x0附近有定義,如果對x0附近的.所有的點,都有f(x)<f(x0),就說f(x0)是函數f(x)的一個極大值,記作y極大值=f(x0),x0是極大值點

            (2).極小值:一般地,設函數f(x)在x0附近有定義,如果對x0附近的所有的點,都有f(x)>f(x0).就說f(x0)是函數f(x)的一個極小值,記作y極小值=f(x0),x0是極小值點

            (3).極大值與極小值統稱為極值

            在定義中,取得極值的點稱為極值點,極值點是自變量的值,極值指的是函數值請注意以下幾點:

            (4)極值是一個局部概念由定義,極值只是某個點的函數值與它附近點的函數值比較是大或小;并不意味著它在函數的整個的定義域內最大或最小。

            (5)函數的極值不是唯一的,即一個函數在某區間上或定義域內極大值或極小值可以不止一個

            (6)極大值與極小值之間

            無確定的大小關系。即一個函數的極大值未必大于極小值,如上圖所示,是極大值點,是極小值點,而>

            (7)函數的極值點一定出現在區間的內部,區間的端點不能成為極值點而使函數取得最大值、最小值的點可能在區間的內部,也可能在區間的端點

            2.判別f(x0)是極大、極小值的方法:

            若滿足,且在的兩側的導數異號,則是的極值點,是極值,并且如果在兩側滿足“左正右負”,則是的極大值點,是極大值;如果在兩側滿足“左負右正”,則是的極小值點,是極小值

            3.求可導函數f(x)的極值的步驟:

            (1)確定函數的定義區間,求導數f′(x)

            (2)求方程f′(x)=0的駐點(一階導數為0的x的值)

            (3)檢查f′(x)=0的駐點左右的符號;如果左正右負,那么f(x)在這個駐點處取得極大值;如果左負右正,那么f(x)在這個駐點處取得極小值;如果左右不改變符號,那么f(x)在這個駐點處無極值

            (三)合作探究、精講點撥。

            例1.(課本例4)求的極值

            解:因為,所以。

            令,得

            下面分兩種情況討論:

            (1)當>0,即,或時;(2)當<0,即時.

            當x變化時,,的變化情況如下表:

            2(-2,2)2

            +0-0+

            極大值

            極小值

            因此,=;

            函數的圖像如圖所示。

            例2求y=(x2-1)3+1的極值

            解:y′=6x(x2-1)2=6x(x+1)2(x-1)2,令y′=0解得x1=-1,x2=0,x3=1

            當x變化時,y′,y的變化情況如下表

            -1(-1,0)0(0,1)1

            -0-0+0+

            ?無極值?極小值0?無極值?

            ∴當x=0時,y有極小值且y極小值=0

            例3設,在和處有極值,且=-1,求,,的值,并求出相應的值。

            解:,∵是函數的極值點,則-1,1是方程的根,即有?,又,則有,由上述三個方程可知,,,此時,函數的表達式為,∴,令,得,當變化時,,的變化情況表:

            -1(-1,1)1

            +0-0+

            極大值1極小值-1

            由上表可知,,

            (學生上黑板解答)

            多媒體展示探究思考題。

            在學生分組實驗的過程中教師巡回觀察指導。(課堂實錄)

            (四)反思總結,當堂檢測。

            教師組織學生反思總結本節課的主要內容,并進行當堂檢測。

            設計意圖:引導學生構建知識網絡并對所學內容進行簡單的反饋糾正。(課堂實錄)

            (五)發導學案、布置預習。

            設計意圖:布置下節課的預習作業,并對本節課鞏固提高。教師課后及時批閱本節的延伸拓展訓練。

            九、板書設計

            極大值:

            極大值點:

            極小值:

            極小值點:

            極值:

            十、教學反思

            本課的設計采用了課前下發預習學案,學生預習本節內容,找出自己迷惑的地方。課堂上師生主要解決重點、難點、疑點、考點、探究點以及學生學習過程中易忘、易混點等,最后進行當堂檢測,課后進行延伸拓展,以達到提高課堂效率的目的。

            在后面的教學過程中會繼續研究本節課,爭取設計的更科學,更有利于學生的學習,也希望大家提出寶貴意見,共同完善,共同進步!

          【 函數的極值與導數教學設計】相關文章:

          《集合與函數》課件設計05-08

          一次函數的教學設計課件02-17

          函數與反函數關于什么對稱10-12

          三角函數優秀的教學設計模板12-27

          三角函數優秀教學設計范文12-28

          教學設計與反思03-30

          《對數函數》課件設計05-08

          背影教學設計與反思設計10-28

          《背影》的教學設計與反思10-29

          鄉愁的教學設計與反思11-13

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  亚洲一级在线中文字幕 | 日韩国产精品久久久久久亚洲 | 午夜福利视频入口 | 五月天久久成人AV | 午夜亚洲在在线观看 | 中文字幕人成乱码熟女免费69 |