有理數的乘法教學設計

          時間:2022-07-15 15:35:40 教學設計 我要投稿

          有理數的乘法教學設計范文(通用6篇)

            作為一名人民教師,常常需要準備教學設計,教學設計以計劃和布局安排的形式,對怎樣才能達到教學目標進行創造性的決策,以解決怎樣教的問題。優秀的教學設計都具備一些什么特點呢?下面是小編精心整理的有理數的乘法教學設計,僅供參考,希望能夠幫助到大家。

          有理數的乘法教學設計范文(通用6篇)

            有理數的乘法教學設計 篇1

            【教學目標】

            (一)知識技能

            1.使學生掌握多個有理數相乘的積的符號法則;

            2.掌握有理數乘法的交換律和結合律,并利用運算律簡化乘法運算;

            (二)過程方法

            在師生互動、生生互動的系列活動中,學會與老師及與其他同學交流、溝通和合作,準確表達自己的思維過程。培養學生觀察、歸納、概括能力及運算能力.

            (三)情感態度

            通過例題與練習,體驗“簡便運算”帶來的愉悅,懂得運算的每一步都必須有依據。通過新知的導入和運用過程,感受到人們認識事物的一般規律是“實踐、認識、再實踐、再認識”。培養學生的觀察和分析能力,滲透轉化的教學思想。

            教學重點

            乘法的符號法則和乘法的運算律.

            教學難點

            幾個有理數相乘的積的符號的確定.

            【復習引入】

            1.有理數乘法法則是什么?

            2.計算(五分鐘訓練):

            (1)(-2)3;

            (2)(-2)(-3);

            (3)4(-1.5);

            (4)(-5)(-2.4);

            (5)-23(-4);

            (6)970(-6);

            (7)1234(-5);

            (8)123(-4)(-5);

            (9)12(-3)(-4)(-5);

            (10)1(-2)(-3)(-4)(-5);

            (11)(-1)(-2)(-3)(-4)(-5).

            【教學過程】

            1.幾個有理數相乘的積的符號法則

            引導學生觀察上面各題的計算結果,找一找積的符號與什么有關?

            (7),(9),(11)等題積為負數,負因數的個數是奇數個;(18),(20)等題積為正數,負因數個數是偶數個.

            是不是規律?再做幾題試試:

            (1)3(-5);(2)3(-5)(-2);(3)3(-5)(-2)(-4);

            (4)3(-5)(-2)(-4)(-3);(5)3(-5)(-2)(-4)(-3)(-6)

            同樣的結論:當負因數個數是奇數時,積為負;當負因數個數是偶數時,積為正.

            再看兩題:

            (1)(-2)(-3)0(-4);(2)20(-3)(-4)

            結果都是0.

            引導學生由以上計算歸納出幾個有理數相乘時積的符號法則:

            幾個不等于0的數相乘,積的符號由負因數的個數決定.當負因數有奇數個時,積為負;當負因數有偶數個時,積為正.

            幾個有理數相乘,有一個因數為0,積就為0.

            說明:(1)這樣以后進行有理數乘法運算時必須先根據負因數個數確定積的符號后,再把絕對值相乘,即先定符號后定值.

            (2)第一個因數是負數時,可省略括號

            例1計算:

            2.乘法運算律

            在做練習時我們看到如果像小學一樣能利用乘法的交換律和結合律

            計算:

            (1)5(-6);(2)(-6)5;

            (3)[3(-4)](-5);(4)3[(-4)(-5)];

            由上面計算結果,可以說明有理數乘法也同樣有交換律,結合律,

            (1)乘法交換律

            文字敘述:兩個數相乘,交換因數的位置,積不變.

            代數式表達:ab=ba.

            (2)乘法結合律

            文字敘述:三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積不變.

            代數式表達:(ab)c=a(bc).

            例2,用簡便方法計算:(1)(-5)89.2(-2)

            (2)(-8)(-7.2)(-2.5)

            解:(1)原式=5289.2……交換因數位置,決定積的符號

            =892………………按順序依次運算

            (2)原式=-(82.5)(7.2)……交換因數位置,決定積的符號

            =-60………………按順序依次運算

            【課堂作業】

            1.確定積的符號:

            積的符號;

            積的符號;

            積的符號。

            2完成下面填空:

            (1)(-10)()0.16=_______

            (2)(-10)(-)(-0.1)6=________

            (3)(-10)(-)(-0.1)(-6)=________

            (4)(-5)(-)3(-2)2=________

            (5)(-5)(-8.1)3.140=________

            3.計算

            (1)8+(-0.5)(-8)(2)(-3)(-)(-)

            (3)(-)50(-)(5)(-6)(+37)(-)(-)

            4.計算:(1)(-4)(-7)(-25)(2)(-)8(-)

            (3)(-0.5)(-1)(-8)(4)(-5)-(-5)(-4).

            (5)(-3)(7)-3(-6)(6)(-1)(-7)+6(-1)

            (7)1-(-1)(-1)-(1)0(-1)

            參考答案:

            1、-,+,-

            2、(1)-2(2)-2(3)2(4)-30(5)0

            3、(1)11(2)(3)0(4)-5

            4、(1)-700(2)(3)-1(4)

            (5)-378(6)4(7)0

            【教學反思】

            有理數乘法的教學,是教學中的難點。學生也能很快融會貫通,只是計算中還會存在著一些問題,練習過程中要一一指正,并提出要求,讓學生在練習中自己總結經驗,牢記結論,做到在簡單的運算中不失分。這節課主要針對剛邁人初中階段的學生年齡特點和心理特征,以及他們現有的認知水平,采用啟發式,小組合作、嘗試練習等教學方法,讓盡可能多的學生自覺參與到學習活動中來.

            有理數的乘法教學設計 篇2

            一、教材分析

            有理數的乘法是繼有理數的加減法之后的又一種基本運算。它既是有理數運算的深入,又是進一步學習有理數的除法、乘方的基礎。對后續知識的學習也是至關重要的。

            二、學情分析

            對于初一學生來說,他們雖已通過學習有理數的加減法具備了初步探究問題的能力,對符號問題也有了一定的認識,但是對知識的主動遷移能力還比較弱,因此,只要引導學生確定了“積”的符號,實質上就是小學算術中數的乘法運算了,突破了有理數乘法的符號法則這個難點,則對于有理數乘法的運算學生就不難掌握了。

            三、教學目標(核心素養立意)

            1.使學生理解有理數乘法的意義,掌握有理數乘法法則,并能準確地進行有理數的乘法運算。

            2.初步培養學生發現問題、分析問題、和解決問題的能力。

            3.通過教學,滲透化歸、分類討論等數學思想方法,激發學生學習數學、應用數學的興趣,

            (4)傳授知識的同時,注意培養學生良好的學習習慣和勇于探索的精神。

            四、教學重、難點

            重點:有理數的乘法法則。

            難點:有理數乘法的符號法則

            五、教學策略

            我在本節課的教學中采用誘思探究式教學法,并應用多媒體現代教學手段,以學生為主體,通過引導啟發、自主探究、點撥歸納完成教學任務,實現教學目標。

            六、教學過程(設計為七個環節)

            (一)復習導入創設情境

            我首先出示幾個相同負數和的計算題,利用乘法的意義很自然地引出負數與正數相乘的新內容,以形成知識的遷移。進而引入本節課題,以問題引領來激發學生求知欲。

            (二)師生互動探究新知

            要求學生自主學習課本內容,完成課文中的填空。我給與學生充足的時間和空間。通過自主學習,小組合作,教師點撥引導學生從有理數分為正數、零、負數三類的角度,區分出有理數乘法的情況有五種:(正×正、正×0、正×負、負×0、負×負)引導學生根據以上實例的運算結果,從積的符號和絕對值兩方面準確地歸納出有理數的乘法的符號法則和有理數乘法的運算法則。(板書:法則)(確定有理數乘法運算的兩步模型:先定符號,在求絕對值)

            這樣設計的目的是(1)構造這組有規律的算式讓學生通過觀察,來發現算式和結果在符號、絕對值方面的關系,找到乘法結果的符號規律,突破本節課的難點。同時又突出了本節課的教學重點。(2)通過比較、分析、概括、討論、展示,滲透分類討論和從特殊歸納一般的數學思想和方法,提高學生整合知識的能力。使學生知道”如何觀察”“如何發現規律”。

            (三)分析法則掌握實質

            (有了以上的'認識)通過設置問題4,讓學生帶著以上的結論,認真觀察(—5)×(—3)這個算式,首先確定積的符號(同號得正,先定號),再確定積的絕對值(5×3=15,再求值)。第二小題讓學生仿照第一小題填空、解答,理解法則的實質,真正掌握本節課的重點。這樣設計是為了再現知識的形成過程,避免單純的記憶,使學習過程成為一種再創造的過程。

            (四)解決問題綜合運用

            通過習題(小試牛刀)的計算,既鞏固了有理數乘法的法則,又明確了倒數的定義,(板書:倒數-乘積是1的兩個數互為倒數)。在有理數范圍內仍有意義。本環節通過讓學生獨立思考、分組討論,完成填空,使學生有效的鞏固重點化解難點。

            (五)體驗成功享受快樂

            利用摸牌游戲,抓住學生對競爭充滿興趣的心理特征,激發學生的學習興趣,用搶答題的形式,使學生的眼、耳、腦、口得到充分的調動,并讓學生在搶答中體驗成功,享受快樂。通過學生參與活動,調動學生學習的積極性。同時讓學生通過本環節進一步理解有理數乘法法則,并在實際問題中進一步培養學生應用數學的意識,體現數學的應用價值。這也是數學核心素養的要求。

            (六)總結收獲暢談體會

            在課堂臨近尾聲時,我鼓勵學生從數學知識、數學方法和數學情感等方面進行自我評價。讓學生充分發表自己的感受,并相互補充。及時有效的回顧小結,進一步明確本節課的主要內容、思想和方法。這樣設計的目的是培養學生的歸納能力和語言表達能力,以及善于反思的好習慣。讓學生品嘗收獲的喜悅,堅定今后學習數學的信心。

            (七)布置作業鞏固深化

            七、課后反思

            在課堂教學過程中,我始終堅持以觀察為起點,以問題為主線,以能力培養為核心的宗旨;遵照教師為主導,學生為主體,訓練為主線的教學原則;遵循由已知到未知、由淺入深、由易到難的認知規律;采用誘思探究教學法,把課堂還給學生,讓他們主動去參與,去探究,去分析。通過創設、引導、滲透、歸納等活動讓學生在不知不覺中掌握重點,突破難點,發展能力,養成良好的數學學習習慣。更好的促進學生全面、持續、和諧的發展。本節課的設計一定還存在不少的紕漏和缺陷,敬請各位同仁批評指正。謝謝大家!

            有理數的乘法教學設計 篇3

            一、教學目標

            1、知識與技能目標

            掌握有理數乘法法則,能利用乘法法則正確進行有理數乘法運算。

            2、能力與過程目標

            經歷探索、歸納有理數乘法法則的過程,發展學生觀察、歸納、猜測、驗證等能力。

            3、情感與態度目標

            通過學生自己探索出法則,讓學生獲得成功的喜悅。

            二、教學重點、難點

            重點:運用有理數乘法法則正確進行計算。

            難點:有理數乘法法則的探索過程,符號法則及對法則的理解。

            三、教學過程

            1、創設問題情景,激發學生的求知欲望,導入新課。

            教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現在水深20米,問放水抗旱前水庫水深多少米?

            學生:26米。

            教師:能寫出算式嗎?學生:……

            教師:這涉及有理數乘法運算法則,正是我們今天需要討論的問題

            2、小組探索、歸納法則

            (1)教師出示以下問題,學生以組為單位探索。

            以原點為起點,規定向東的方向為正方向,向西的方向為負方向。

            ①2×3

            2看作向東運動2米,×3看作向原方向運動3次。

            結果:向運動米

            2×3=

            ②-2×3

            -2看作向西運動2米,×3看作向原方向運動3次。

            結果:向運動米

            -2×3=

            ③2×(-3)

            2看作向東運動2米,×(-3)看作向反方向運動3次。

            結果:向運動米

            2×(-3)=

            ④(-2)×(-3)

            -2看作向西運動2米,×(-3)看作向反方向運動3次。

            結果:向運動米

            (-2)×(-3)=

            (2)學生歸納法則

            ①符號:在上述4個式子中,我們只看符號,有什么規律?

            (+)×(+)=()同號得

            (-)×(+)=()異號得

            (+)×(-)=()異號得

            (-)×(-)=()同號得

            ②積的絕對值等于。

            ③任何數與零相乘,積仍為。

            (3)師生共同用文字敘述有理數乘法法則。

            3、運用法則計算,鞏固法則。

            (1)教師按課本P75例1板書,要求學生述說每一步理由。

            (2)引導學生觀察、分析例子中兩因數的關系,得出兩個有理數互為倒數,它們的積為。

            (3)學生做練習,教師評析。

            (4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數相乘的符號法則。

            有理數的乘法教學設計 篇4

            一、學情分析:

            1、學生的知識技能基礎:學生在小學已經學習過非負有理數的四則運算以及運算律。在本章的前面幾節課中,又學習了數軸、相反數、絕對值的有關概念,并掌握了有理數的加減運算法則及其混和運算的方法,學會了由運算解決簡單的實際問題,具備了學習有理數乘法的知識技能基礎。

            2、學生的活動基礎:在相關知識的學習過程中,學生已經歷了探索加法運算法則的活動,并且通過觀察"水位的變化",運用有理數的加法法則解決了一些實際問題,從而獲得了較為豐富的數學活動經驗,同時在以前的學習中,學生曾經歷了合作學習和探索學習的過程,具有了合作和探索的意識。

            二、教材分析:

            教科書基于學生已掌握了有理數加法、減法運算法則的基礎上,提出了本節課的具體學習任務:發現探索有理數的乘法法則,了解倒數的概念,會進行有理數的運算。

            本節課的數學目標是:

            1、經歷探索有理數乘法法則的過程,發展觀察、歸納、猜想、驗證能力;

            2、學會進行有理數的乘法運算,掌握確定多個不等于零的有理數相乘的積的符號方法以及有一個數為零積是零的情況:

            三、教學過程設計:

            本節課設計了六個環節:第一環節:問題情境,引入新課;第二環節:探索猜想,發現結論;第三環節:驗證明確結論;第四環節:運用鞏固,練習提高;第五環節:課堂小結;第六環節:布置作業。

            第一環節:問題情境,引入新課

            問題:(1)觀察教科書給出的圖片,分析教科書提出的問題,弄清題意,明確已知是什么,所求是什么,讓學生討論思考如何解答。

            (2)如果用正號表示水位上升,用負號表示水位下降,討論四天后,甲水庫水位的變化量的表示法和乙水庫水位變化量的表示法。

            設計意圖:培養學生從圖形語言和文字語言中獲取信息的能力,感受用數學知識解決實際問題,體驗算法多樣化,并從第二種算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)從而引出課題:有理數的乘法。

            第二環節:探索猜想,發現結論

            問題:(1)由課題引入中知道:4個-3相加等于-12,可以寫成算式

            (-3×4)=-12,那么下列一組算式的結果應該如何計算?請同學們思考:

            (-3)×3=_____;

            (-3)×2=_____;

            (-3)×1=_____;

            (-3)×0=_____。

            (2)當同學們寫出結果并說明道理時,讓學生通過觀察這組算式等號兩邊的特點去發現積的變化規律,然后再出示一組算式猜想其積的結果:

            (-3)×(-1)=_____;

            (-3)×(-2)=_____;

            (-3)×(-3)=_____;

            (-3)×(-4)=_____。

            教前設計意圖:以算式求解和探究問題的形式引導學生逐步深入的觀察思考,從負數與非負數相乘的一組算式中發現規律后,猜想負數與負數相乘的積是多少,通過對兩組算式的觀察,歸納,概括出有理數的乘法法則,并用語言表述之,以培養學生的觀察能力,猜想能力,能力和表述能力。

            教后事項:(1)本環節的設計理念是學生通過觀察思考,親身經歷感受乘法法則的發現過程,并在合作交流中互相補充,完善結論。但在實際過程中,學生對結論的表述有困難,或者表達不準確,不全面,對于這些問題,不能求全責備,而應循循善誘,順勢引導,幫助學生盡可能簡練準確的表述,也不要擔心時間不足而代替學生直接表述法則。

            (2)展示兩組算式時,注意板書藝術,把算式豎排,并對齊書寫,這樣易于學生觀察特點,發現規律。

            第三環節:驗證明確結論

            問題:針對上一環節探究發現的有理數乘法法則:兩數相乘,同號得正,異號得負,絕對值相乘,任何數與零相乘,積仍為零。進行驗證活動,出示一組算式由學生完成。

            4×(-4)=_____;

            4×(-3)=_____;

            4×(-2)=_____;

            4×(-1)=_____;

            (—4)×0=_____;

            (—4)×1=_____;

            (—4)×2=_____;

            (—4)×(-1)=_____;

            (—4)×(-2)=_____。

            教前設計意圖:這個環節的設計一方面是因為它是合情推理的必要環節,另一方面是為了讓學生知道從特例歸納得到的結論不一定適合

            一般情況,所以要加以驗證和證明它的正確性。同時,驗證的過程本身就是對有理數乘法法則的練習和熟悉過程。

            教后反思事項:

            (1)教科書中沒有這個環節的要求,但在教學中應該設計這個環節,確實讓學生體驗經歷驗證過程。

            (2)本環節的重點是驗證乘法法則的正確性而不是運用乘法法則計算。所以在驗證過程中,既要用乘法法則計算,又要加法法則計算,真正體現驗證的作用和過程。

            (3)在用乘法法則計算時,要注意其運算步驟與加法運算一樣,都是先確定結果的符號,再進行絕對值的運算。另外還應注意:法則中的“同號得正,異號得負”是專指“兩數相乘而言的,”不可以運用到加法運算中去。

            第四環節:運用鞏固,練習提高

            活動內容:

            (1)1.計算:

            ⑴(-4)×5;⑵(5-)×(-7);

            ⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);

            (2)2.計算:

            ⑴(-4)×5×(-0.25);⑵(-3÷5)×(-5÷6)×(-2);

            3.“議一議”:幾個有理數相乘,因數都不為零時,積的符號怎樣確定?有一個因數為零時,積是多少?

            (4)計算:

            ⑴(-8)×21÷4;⑵4÷5×(-25÷6)×(-7÷10);

            ⑶2÷3×(-5÷4);⑷(-24÷13)×(-16÷7)×0×4÷3;

            ⑸5÷4×(-1.2)×(-1÷9);⑹(-3÷7)×(-1÷2)×(-8÷15)。

            教前設計意圖:對有理數乘法法則的鞏固和運用,練習和提高.

            教后反思事項:(1)學生先自主嘗試解決,全班交流,教師點撥要注意格式規范,一開始對每一步運算應注明理由,運算熟練后,可不要求書寫每一步的理由;

            (2)例2講解之后,要啟發學生完成"議一議"的內容,鼓勵學生通過對例2的運算結果觀察分析,用自己的語言表達所發現的規律,學生有困難時,教師可設置如下一組算式讓學生計算后觀察發現規律,而不應代替學生完成這個任務。

            (-1)×2×3×4=_____;

            (-1)×(-2)×3×4=_____;

            (-1)×(-2)×(-3)×4=_____;

            (-1)×(-2)×(-3)×(-4)=_____;

            (-1)×(-2)×(-3)×(-4)×0=_____。

            通過對以上算式的計算和觀察,學生不難得出結論:多個數相乘,積的符號由負因數的個數,當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個數為零,積就為零。當然這段語言,不需要讓學習背誦,只要理解會用即可。

            第五環節:感悟反思課堂小結

            問題

            1.本節課大家學會了什么?

            2.有理數乘法法則如何敘述?”

            3.有理數乘法法則的探索采用了什么方法?

            4.你的困惑是什么

            教前設計意圖:培養學生的口頭表達能力,提高學生的參與意識。激勵學生展示自我。

            教后反思事項:學生小結時,可能會有語言表達障礙或表達不流暢,但只要不影響運算的正確性,則不必強調準確記憶,而應鼓勵學生大膽發言,同時教師可用準確的語言適時的加以點撥。

            第六環節:布置作業

            鞏固作業:教科書知識技能1、2;問題解決1;聯系擴廣1

            預習作業;略

            四、教學反思:

            1、設計條理的問題串,使觀察、猜想、驗證水到渠成

            2、相信學生的探索能力。本節課的內容適合學生探索,只要教師適當引導,學生具有能力探索出有理數的乘法法則的,不需要教師代替,也不能代替。

            3、合理使用多媒體教學手段可以彌補課堂時間的不足,但絕不能代替必要的板書。

            有理數的乘法教學設計 篇5

            教學目標

            1.使學生在了解有理數的乘法意義基礎上,理解有理數乘法法則,并初步理解有理數乘法法則的合理性;

            2.通過有理數的乘法運算,培養學生的運算能力;

            3.通過教材給出的行程問題,認識數學于實踐并反作用于實踐。

            教學重點和難點

            重點:依據有理數的乘法法則,熟練進行有理數的乘法運算;

            難點:有理數乘法法則的理解.

            課堂教學過程設計

            一、從學生原有認知結構提出問題

            1.計算(-2)+(-2)+(-2).

            2.有理數包括哪些數?小學學習四則運算是在有理數的什么范圍中進行的?(非負數)

            3.有理數加減運算中,關鍵問題是什么?和小學運算中最主要的不同點是什么?(符號問題)[

            4.根據有理數加減運算中引出的新問題主要是負數加減,運算的關鍵是確定符號問題,你能不能猜出在有理數乘法以及以后學習的除法中將引出的新內容以及關鍵問題是什么?(負數問題,符號的確定)

            二、師生共同研究有理數乘法法則

            問題1水庫的水位每小時上升3厘米,2小時上升了多少厘米?

            解:3×2=6(厘米)①

            答:上升了6厘米.

            問題2水庫的水位平均每小時下降3厘米,2小時上升多少厘米?

            解:-3×2=-6(厘米)②

            答:上升-6厘米(即下降6厘米).

            引導學生比較①,②得出:

            把一個因數換成它的相反數,所得的積是原來的積的相反數.

            這是一條很重要的結論,應用此結論,3×(-2)=?(-3)×(-2)=?(學生答)

            把3×(-2)和①式對比,這里把一個因數“2”換成了它的相反數“-2”,所得的積應是原來的積“6”的相反數“-6”,即3×(-2)=-6.

            把(-3)×(-2)和②式對比,這里把一個因數“2”換成了它的相反數“-2”,所得的積應是原來的積“-6”的相反數“6”,即(-3)×(-2)=6.

            此外,(-3)×0=0.

            綜合上面各種情況,引導學生自己歸納出有理數乘法的法則:

            兩數相乘,同號得正,異號得負,并把絕對值相乘;

            任何數同0相乘,都得0.

            繼而教師強調指出:

            “同號得正”中正數乘以正數得正數就是小學學習的乘法,有理數中特別注意“負負得正”和“異號得負”.

            用有理數乘法法則與小學學習的乘法相比,由于介入了負數,使乘法較小學當然復雜多了,但并不難,關鍵仍然是乘法的符號法則:“同號得正,異號得負”,符號一旦確定,就歸結為小學的乘法了.

            因此,在進行有理數乘法時,需要時時強調:先定符號后定值.

            三、運用舉例,變式練習

            例某一物體溫度每小時上升a度,現在溫度是0度.

            (1)t小時后溫度是多少?

            (2)當a,t分別是下列各數時的結果:

            ①a=3,t=2;②a=-3,t=2;

            ②a=3,t=-2;④a=-3,t=-2;

            教師引導學生檢驗一下(2)中各結果是否合乎實際.

            課堂練習

            1.口答:

            (1)6×(-9);(2)(-6)×(-9);(3)(-6)×9;

            (4)(-6)×1;(5)(-6)×(-1);(6)6×(-1);

            (7)(-6)×0;(8)0×(-6);

            2.口答:

            (1)1×(-5);(2)(-1)×(-5);(3)+(-5);

            (4)-(-5);(5)1×a;(6)(-1)×a.

            這一組題做完后讓學生自己總結:一個數乘以1都等于它本身;一個數乘以-1都等于它的相反數.+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同時教師強調指出,a可以是正數,也可以是負數或0;-a未必是負數,也可以是正數或0.

            3.填空:

            (1)1×(-6)=______;(2)1+(-6)=_______;

            (3)(-1)×6=________;(4)(-1)+6=______;

            (5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;

            (9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.

            4.判斷下列方程的解是正數還是負數或0:

            (1)4x=-16;(2)-3x=18;(3)-9x=-36;(4)-5x=0.

            四、小結

            今天主要學習了有理數乘法法則,大家要牢記,兩個負數相乘得正數,簡單地說:“負負得正”.

            五、作業

            1.計算:

            (1)(-16)×15;

            (2)(-9)×(-14);(3)(-36)×(-1);

            (4)100×(-0.001);

            (5)-4.8×(-1.25);

            (6)-4.5×(-0.32).

            2.填空(用“>”或“<”號連接):

            (1)如果a<0,b<0,那么ab________0;

            (2)如果a<0,b<0,那么ab_______0;

            (3)如果a>0時,那么a____________2a;

            (4)如果a<0時,那么a__________2a.

            探究活動

            問題:桌上放7只茶杯,杯口全部朝上,每次翻轉其中的4只,能否經過若干次翻轉,把它們翻成杯口全部朝下?

            答案:“±1”將告訴你:不管你翻轉多少次,總是無法使這7只杯口全部朝下.道理很簡單,用“+1”表示杯口朝上,“-1”表示杯口朝下,問題就變成:“把7個+1每次改變其中4個的符號,若干次后能否都變成-1?”考慮這7個數的乘積,由于每次都改變4個數的符號,所以它們的乘積永遠不變(為+1).而7個杯口全部朝下時,7個數的乘積等于-1,這是不可能的.

            道理竟是如此簡單,證明竟是如此巧妙,這要歸功于“±1”語言.

            有理數的乘法教學設計 篇6

            教學目的:

            (一)知識點目標:有理數的乘法運算律。

            (二)能力訓練目標:

            1.經歷探索有理數乘法的運算律的過程,發展觀察、歸納的能力。

            2.能運用乘法運算律簡化計算。

            (三)情感與價值觀要求:

            1.在共同探索、共同發現、共同交流的過程中分享成功的喜悅。

            2.在討論的過程中,使學生感受集體的力量,培養團隊意識。

            教學重點:

            乘法運算律的運用。

            教學難點:

            乘法運算律的運用。

            教學方法:

            探究交流相結合。

            創設問題情境,引入新課

            [活動1]

            問題1:有理數的加法具有交換律和結合律,在以前學過的范圍內乘法交換律、結合律,以及乘法對加法的分配律都是成立的,那么在有理數的范圍內,乘法的這些運算律成立嗎?

            問題2:計算下列各題:

            (1)(一7)×8;

            (2)8×(一7);

            (5)[3×(一4)]×(一5);

            (6)3×[(一4)×(一5)];

            [師生]由學生自主探索,教師可參與到學生的討論中。

            像前面那樣規定有理數乘法法則后,乘法的交換律和結合律與分配律在有理數乘法中仍然成立。我們可以通過問題2來檢驗。(略)

            [師]同學們自己采用上面的方法來探究一下分配律在有理數范圍內成立嗎?

            [生]例如:5×[3十(一7)]和5×3十5×(一7);(略)

            [師](一5)×(3一7)和(一5)×3一5×7的結果相等嗎?

            (注意:(一5)×(3一7)中的3一7應看作3與(一7)的和,才能應用分配律。否則不能直接應用分配律,因為減法沒有分配律。)

            講授新課:

            [活動2]用文字語言和字母把乘法交換律、結合律、分配律表達出來。

            應得出:1.一般地,有理數乘法中,兩個數相乘,交換因數的位置,積相等.

            2.三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。

            3.一般地,一個數同兩個數的和相乘,等于這個數分別同這兩個數相乘,再把積相加。

            [活動3][師生]教師引導學生討論、交流,從中體會學習的快樂。

            3.用簡便方法計算:

            [活動4]

            練習(教科書第42頁)

            課時小結:

            這節課我們學習乘法的運算律及它們的運用,使我們體驗到了掌握一般的正常運算外,還要靈活運用運算律,能簡便的一定要簡便,這樣做既快又準。

            課后作業:課本習題1.4的第7題(3)、(6)。

            活動與探究:

            用簡便方法計算:

            (1)6.868×(一5)十6.868×(一12)十6.868×(十17)

            (2)[(4×8)×25一8]×125

          【有理數的乘法教學設計】相關文章:

          《有理數的乘法》教學設計03-03

          有理數乘法教學設計09-09

          有理數的乘法教學設計12-18

          有理數的乘法的教學設計范文01-07

          《有理數的乘法》教學設計及教學反思07-15

          人教版數學有理數乘法教學設計08-17

          有理數的乘法教學設計(精選8篇)05-20

          有理數乘法教學反思05-19

          有理數乘法的教學反思05-23

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  午夜国语精品自产拍在线观看 | 中文字幕在线免费观看视频 | 在线日韩日本国产亚洲 | 一本大道久久a久久精品综合1 | 亚洲丁香六月开心婷婷 | 亚洲人成网线在线va播放 |