整式的乘法教學設計

          時間:2021-03-31 17:17:14 教學設計 我要投稿

          整式的乘法教學設計(精選3篇)

            作為一位杰出的老師,很有必要精心設計一份教學設計,教學設計是對學業業績問題的解決措施進行策劃的過程。那么應當如何寫教學設計呢?下面是小編為大家整理的整式的乘法教學設計,歡迎大家借鑒與參考,希望對大家有所幫助。

          整式的乘法教學設計(精選3篇)

            整式的乘法教學設計1

            一、內容和內容解析

            1、內容:同底數冪的乘法。

            2、內容解析

            同底數冪的乘法是冪的一種運算,在整式乘法中具有基礎地位。在整式的乘法中,多項式的乘法要轉化為單項式的乘法,單項式的乘法要轉化為冪的運算,而冪的運算以同底數冪的乘法為基礎。

            同底數冪的乘法將同底數冪的乘法運算轉化為指數的加法運算,其中底數a可以是具體的數、單項式、多項式、分式乃至任何代數式。同底數冪的乘法是類比數的乘方來學習的,首先在具體例子的基礎上抽象出同底數冪的乘法的性質,進而通過推理加以推導,這一過程蘊含數式通性、從具體到抽象的思想方法。

            基于以上分析,確定本節課的教學重點:同底數冪的乘法的運算性質。

            二、目標和目標解析

            1、目標

            (1)理解同底數冪的乘法,會用這一性質進行同底數冪的乘法運算。

            (2)體會數式通性和從具體到抽象的思想方法在研究數學問題中的作用。

            2、目標解析

            達成目標(1)的標志是:學生能根據乘方的意義推導出同底數冪乘法的性質,會用符號語言和文字語言表述這一性質,會用性質進行同

            底數冪的乘法運算。

            達成目標(2)的標志學生發現和推導同底數冪的乘法的運算性質,會用符號語言,文字語言表述這一性質,能認識到具體例子在發現結論的過程中所起的作用,能體會到數式通性在推到結論的過程中的重要作用。

            三、教學問題診斷分析

            在前面的學習中,學生已經學習了用字母表示數以及整式的加減運算,但是用字母表示冪以及冪的運算還是初次接觸。冪的運算抽象程度較高,不易理解,特別對于am+n的指數的理解,因為它不僅抽象程度較高,而且運算結果反映在指數上,學生第一次接觸,也很難理解。教學時,應引導學生回顧乘方的意義,從數式通性的角度理解字母表示的冪的意義,進而明確同底數冪乘法的運算性質。

            本節課的教學難點是:同底數冪的運算性質的理解與推導。

            四、教學過程設計

            1、創設情境,提出問題

            問題1: 一種電子計算機每秒可進行1014次運算,它工作103秒可進行多少次運算?

            回顧與思考:什么叫乘方? an 表示的意義是什么?其中a、n、an分別叫什么?

            師生活動:教師提出復習問題,學生主動思考并回答問題,并嘗試用學過的知識解決問題。

            設計意圖:從實際問題導入,讓學生動手試一試,主動探索,在自己

            的實踐中感受學習同底數冪的乘法的必要性,并通過有步驟、有依據的計算,為探索同底數冪的乘法的運算性質做好知識和方法的鋪墊,同時因為關于底數、指數、冪等概念是在有理數的乘法中學習的,學生可能生疏或遺忘,在新課講解之前利用這個實際問題進行復習。

            2、探索新知

            問題2根據乘方的意義填空:

            25×22=( )×( )=_____________=2( ) a3×a2=( )×( )=______________=a( ) 5m×5n=( )×( )=______________=5()

            (1) 探一探 觀察幾個式子左右兩邊底數、指數有什么變化?

            (2) 說一說 根據上面式子的計算結果,你能發現有什么規律嗎?小

            組交流一下想法。

            (3) 猜一猜 am×an=?(m、n是正整數)

            師生活動:學生獨立思考,然后小組交流思考結果。

            設計意圖:從引例到“推一推”、“說一說”、“猜一猜”是一個從特殊到一般,從具體到抽象,把冪的底數與指數分兩步又有層次地進行概括抽象的過程。在這一過程中,要留給學生探索與交流的空間,讓學生在自己的實踐中獲得運算法則。

            問題3 你能將你的猜想推導出來嗎?

            am·an=(a·a·﹒﹒﹒·a) ·(a·a·﹒﹒﹒·a)——乘方的意義

            = a·a·﹒﹒﹒·a —— 乘法結合律

            =am+n ——乘方的意義

            師生活動:教師提出問題,學生獨立思考并寫出推導過程,教師用多媒體展示推導過程。

            設計意圖:通過推導得出同底數冪的乘法的運算性質,讓學生認識并體驗數式通性,體會由具體到抽象的數學思想方法。

            追問1: 通過上面的探索與推導,你能用文字語言概括同底數冪乘

            法的運算性質嗎?

            師生活動:教師提出問題學生嘗試用文字語言概括同底數冪乘法的運

            算性質:同底數冪相乘,底數不變,指數相加。

            3、課堂練習鞏固同底數冪乘法的運算性質

            練習1:計算題(結果寫成冪的形式)

            1)103×104 =

            2)(—7)3·(—7)8 =

            3)a·a3 =

            4)(a—b)2·(a—b) =

            5)a·a3·a5 =

            師生活動:學生獨立完成,小組合作交流答案。最后教師總結:在同底數冪的乘法運算中,底數可以是數、字母或式子。

            設計意圖:讓學生通過練習,領會同底數冪乘法的運算性質。并體會底數的變化,可以是數、字母或式子。

            問題4:a·a3·a5 =?同底數冪的乘法運算性質對于三個、四個······多個同底數冪相乘是否也適用呢?

            師生活動:教師提出問題,學生思考回答問題,并將這一性質推廣到多個同底數冪相乘的情況。

            設計意圖:通過利用文字語言概括性質以及對性質進行推廣的過程,促進學生對公式結構特征的深層理解。

            練習2判斷題(若錯誤,請在題后寫出正確答案)

            1)a5 · a5= 2a5( )

            2)b5 + b5 = b10( )

            3)x5 ·x5 = x25( )

            4)y5 · y5 = 2y10( )

            5)m · m3 = m3( )

            6)n + n3 = n4( )

            師生活動:學生思考判斷,領略“法官斷案”的快樂。

            設計意圖:讓學生熟練地運用同底數冪乘法的運算性質,領略同底數冪乘法的魅力。

            4、課堂小結

            教師與學生一起回顧本節課所講內容以及注意事項

            設計意圖:

            5、布置作業

            必做:課本 P105頁 第9題

            選做:課本 P106頁 第13題

            整式的乘法教學設計2

            第一課時

            教學目標:

            1、經歷探索整式的乘法運算法則的過程,會進行簡單的'整式的乘法運算。

            2、理解整式的乘法運算的算理,體會乘法分配律的作用和轉化思想,發展有條理的思考及語言表達能力。

            教學重點:

            整式的乘法運算。

            教學難點:

            推測整式乘法的運算法則。

            教學過程:

            一、探索練習:展示圖畫,讓學生觀察圖畫用不同的形式表示圖畫的面積。并做比較。由此得到單項式與多項式的乘法法則。觀察式子左右兩邊的特點,找出單項式與多項式的乘法法則。

            跟著用乘法分配律來驗證。

            單項式與多項式相乘:就是根據分配律用單項式去乘多項式的每一項再把所得的積相加。

            二、例題講解:

            例2:計算(1)2ab(5ab2+3a2b);

            (2)解略。

            三、鞏固練習:

            1、判斷題:(1)3a3·5a3=15a3( )

            (2)( )

            (3)( )

            (4)—x2(2y2—xy)=—2xy2—x3y( )

            2、計算題:

            (1);(2);(3);(4)—3x(—y—xyz);(5)3x2(—y—xy2+x2);(6)2ab(a2b—c);(7)(a+b2+c3)·(—2a);(8)[—(a2)3+(ab)2+3]·(ab3);(9);(10);(11)(。

            四、應用題:

            1。有一個長方形,它的長為3acm,寬為(7a+2b)cm,則它的面積為多少?

            五、提高題:

            1。計算:(1)(x3)2―2x3[x3―x(2x2―1)];(2)xn(2xn+2—3xn—1+1)。

            2。已知有理數a、b、c滿足|a―b―3|+(b+1)2+|c—1|=0,求(—3ab)·(a2c—6b2c)的值。

            3。已知:2x·(xn+2)=2xn+1—4,求x的值。

            4。若a3(3an—2am+4ak)=3a9—2a6+4a4,求—3k2(n3mk+2km2)的值。

            小結:要善于在圖形變化中發現規律,能熟練的對整式加減進行運算。作業:課本P11習題1。3教學后記:

            第二課時

            教學目標:

            1、經歷探索多項式乘法的法則的過程,理解多項式乘法的法則,并會進行多項式乘法的運算。

            2、進一步體會乘法分配律的作用和轉化的思想,發展有條理的思考和語言表達能力。

            教學重點:

            多項式乘法的運算。

            教學難點:

            探索多項式乘法的法則,注意多項式乘法的運算中“漏項”、“符號”的問題

            教學過程:

            一、探索練習:如圖,計算此長方形的面積有幾種方法?如何計算?小組討論。你從計算中發現了什么?多項式與多項式相乘,_____________________________。

            二、鞏固練習:1。計算下列各題:(1);(2);(3);(4);(5);(6);(7);(8);(9);(10);(11)。

            三、提高練習:

            1、若;則m=_____,n=________

            2、若,則k的值為( )(A)a+b(B)—a—b(C)a—b(D)b—a

            3、已知,則a=______,b=______。

            4、若成立,則X為__________。

            5、計算:+2。

            6、某零件如圖示,求圖中陰影部分的面積S。

            7、在與的積中不含與項,求P、q的值。

            一、小結:

            本節課學習了多項式乘法的運算,要特別注意多項式乘法的運算中不要“漏項”、和“符號”的正確處理。

            六、作業:第28頁習題 1、2

            整式的乘法教學設計3

            內容:

            整式的乘法單項式乘以多項式 P58—59

            課型:

            新授

            時間:

            學習目標:

            1、在具體情景中,了解單項式和多項式相乘的意義。

            2、在通過學生活動中,理解單項式和多項式相乘的法則,會用它們進行計算。

            3、培養學生有條理的思考和表達能力。

            學習重點:

            單項式乘以多項式的法則

            學習難點:

            對法則的理解

            學習過程

            1。 學習準備

            1。 敘述單項式乘以單項式的法則

            2。 計算

            (1)(— a2b) (2ab)3=

            (2) (—2x2y)2 (— xy)—(—xy)3(—x2)

            3、舉例說明乘法分配律的應用。

            2。 合作探究

            (一)獨立思考,解決問題

            1、 問題: 一個施工隊修筑一條路面寬為n m的公路,第一天修筑 a m長,第二天修筑長 b m,第三天修筑長 c m,3天工修筑路面的面積是多少?

            結合圖形,完成填空。

            算法一:3天共修筑路面的總長為(a+b+c)m,因為路面的寬為bm,所以3

            天共修筑路面 m2。

            算法二:先分別計算每天修筑路面的面積,然后相加,則3天修路面 m2。

            因此,有 = 。

            3。 你能用字母表示乘法分配律嗎?

            4。 你能嘗試總結單項式乘以多項式的法則嗎?

            (二)師生探究,合作交流

            1、例3 計算:

            (1) (—2x) (—x2x+1) (2)a(a2+a)— a2 (a—2)

            2、練一練

            (1)5x(3x+4) (2) (5a2 a+1)(—3a)

            (3)x(x2+3)+x2(x—3)—3x(x2x—1)

            (4)(a)(—2ab)+3a(ab—b—1))

            (三)學習體會

            對照學習目標,通過預習,你覺得自己有哪些方面的收獲?有什么疑惑?

            (四)自我測試

            1、教科書P59 練習 3,結合解題,體會單項式乘以多項式的幾何意義。

            2、判斷題

            (1)—2a(3a—4b) =—6a2—8ab ( )

            (2) (3x2—xy—1) x =x3 —x2y—x ( )

            (3)m2— (1— m) = m2— — m ( )

            3、已知ab2=—1,—ab(a2b3—ab3—b)的值等于 ( )

            A。 —1 B。 0 C。 1 D。 無法確定

            4、計算(20xx賀州中考)

            (—2a)( a3 —1) =

            5、(3m)2(m2+mn—n2)=

            (五)應用拓展

            1、計算

            (1)2a(9a2—2a+3)—(3a2) (2a—1)

            (2)x(x—3)+2x(x—3)=3(x2—1)

            2、若一個梯形的上底長(4m+3n)cm,下底長(2m+n)cm,高為3m2n cm,求此梯形的面積。

            3、一塊邊長為xcm的正方形地磚,因需要被裁掉一塊2cm寬的長條,為剩下部分面積是多少?

          【整式的乘法教學設計(精選3篇)】相關文章:

          《乘法》教學設計04-01

          《乘法估算》的教學設計03-31

          口算乘法教學設計(精選5篇)05-11

          《5的乘法口訣》教學設計03-31

          乘法結合律教學設計02-23

          分數乘法三教學設計04-28

          乘法結合律教學設計02-23

          5的乘法口訣教學設計(15篇)04-01

          5的乘法口訣教學設計15篇04-01

          《5的乘法口訣》教學設計13篇03-31

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  伊人一区在线观看 | 色婷婷综合久久久中文字幕 | 亚洲国产欧美国产综合在线一区 | 中文字幕无线码一区精品 | 亚洲日韩首次亮相在线 | 亚洲欧美激情国产综合久久久 |