二次函數說課課件

          時間:2021-06-10 14:22:28 課件 我要投稿

          二次函數說課課件

            二次函數(quadratic function)的基本表示形式為y=ax+bx+c(a≠0)。二次函數最高次必須為二次, 二次函數的圖像是一條對稱軸與y軸平行或重合于y軸的拋物線。下面是小編為你帶來的二次函數說課課件 ,歡迎閱讀。

          二次函數說課課件

            教學目標:

            1.使學生掌握用描點法畫出函數y=ax2+bx+c的圖 象。

            2.使學生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標。

            3.讓學生經歷探索二次函數y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標以及性質的過程,理解二次函數y=ax2+bx+c的性質。

            重點難點:

            重點:用描點法畫出二次函數y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標是教學的重點。

            難點:理解二次函數y=ax2 +b x+c(a≠0)的 性質以及它的對稱軸(頂點坐標分別是x=-b2a、(-b2a,4ac-b24a)是教學的難點。

            教學過程:

            一、提出問題

            1.你能說出函數y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標嗎?

            2.函數 y=-4(x-2)2+1圖象與函數y=-4x2的圖象有什么關系?

            (函數y=-4(x-2)2+1的圖象可以看成是將函數y= -4x2的圖象向右平移2個單位再向上平移1個單位得到的)

            3.函數y=-4(x-2)2+1具有哪些性質?

            (當x<2時,函數值y隨x的增大而增大,當x>2時,函數值y隨x的增 大而減小;當x=2時,函數取得最大值,最大值y=1)

            4.不畫出圖象,你能直接說出函數y=-12x2+x-52的圖象的開口方向、對稱軸和頂點坐標嗎?

            5.你能畫出函數y=-12x2+x-52的圖象,并說明這個函數具有哪些性質嗎?

            二、解決問題

            由以上第4個問題的解決 ,我們已經知道函數y=-12x2+x-52的圖象的開口方向、對稱軸和頂點坐標。根據這些特點,可以采用描點法作圖的'方法作出函數y=-12x2+x-52的圖象,進而觀察得到這個函數的性質。

            解:(1)列表:在x的取值范圍內列出函數對應值表;

            x…-2-101234…

            y…-612

            -4-212

            -2-212

            -4-612

            …

            (2)描點:用表格里各組對應值作為點的坐標,在平面直角坐標系中描點。

            (3)連線:用光滑的曲線順次連接各點,得到函數y=-12x2+x-52的圖象。

            說明:(1)列表時,應根據對稱軸是x=1,以1為中心,對稱地選取自變量的值,求出相應的函數值。相應的函數值是相等的。

            (2)直角坐標系中x軸、y軸的長度單位可以任意定,且允許x軸、y軸選取的長度單位不同。所以要根據具體問題 ,選取適當的長度單位,使畫出的圖象美觀。

            讓學生觀察函數圖象,發表意見,互相補充,得到這個函數韻性質;

            當x<1時,函數值y隨x的增大而增大;當x>1時,函數值y隨x的增大而減小;

            當x=1時,函數取得最大值,最大值y=-2

            三、做一做

            1.請你按照上面的方法,畫出函數y=12x2-4x+10的圖象,由圖象你能發現這個函數具有哪些性質嗎?

            教學要點

            (1)在學生畫函數圖象的同時,教師巡視、指導;

            (2)叫一位或兩位同學板演,學生自糾,教 師點評。

            2.通過配方變形,說出函數y=-2x2+8x-8的圖象的開口方向、對稱軸和頂點坐標,這個函數有最大值還是最小值?這個值是多少?

            教學要點

            (1)在學生做題時,教師巡視、指導;(2)讓學生總結配方的方法;(3)讓學生思考函數的最大值或最小值與函數圖象的開口方向有什么關系?這個值與函數圖象的頂點坐標有什么關系?

            以上講的,都是給出一個具體的二次函數,來研究它的圖象與性質。那么,對于任意一個二次函數y=ax2+bx+c(a≠0),如何確定它的圖象的開口方向、對稱軸和頂點坐標?你能把結果寫出來嗎?

            教師組織學生分組討論,各組選派代表發言,全班交流,達成共識;

            y=ax2 +bx+c=a(x2+bax)+c =a[x2+bax+(b2a)2-(b2a)2]+c =a[x2+bax+(b2a)2]+c-b24a

            =a(x+b2a)2+4ac-b24a

            當a>0時,開口向上,當a<0時,開口向下。

            對稱軸是x=-b/2a,頂點坐標是(-b2a,4ac-b24a)

            四、課堂練習:

            練習第1、2、3題。

            五、小結: 通過本節課的學習,你學到了什么知識?有何體會?

            六、作業:

            1.填空:

            (1)拋物線y=x2-2x+2的頂點坐標是_______;

            (2)拋物線y=2x2-2x-52的開口_______,對稱軸是_______;

            (3)拋物線y=-2x2-4x+8的開口_______,頂點坐標是_______;

            (4)拋物線y=-12x2+2x+4的對稱軸是_______;

            (5)二次函數y=ax2+4x+a的最大值是3,則a=_______.

            2.畫出函數y=2x2-3x的圖象,說明這個函數具有哪些性質。

            3. 通過配方,寫出下列拋物線的開口方向、對稱軸和頂點坐標。

            (1 )y=3x2+2x;(2)y=-x 2-2x

            ( 3)y=-2x2+8x-8(4)y=12x2-4x+3

            4.求二次函數y=mx2+2mx+3(m>0)的圖象的對稱軸,并說出該函數具有哪些性質

          【二次函數說課課件】相關文章:

          二次函數課件說課03-18

          二次函數說課稿02-17

          二次函數說課稿11-02

          冪函數說課課件03-21

          小數的近似數說課課件03-20

          平均數說課課件03-20

          變量與函數說課稿課件03-23

          認識分數說課課件06-11

          認識小數說課稿課件03-23

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  日韩欧美另类一区精品在线 | 亚洲中文字幕精品一区二区 | 亚洲欧美一区二区三区另类 | 伊人大蕉香中文字幕青青 | 在线激情小视频第一页 | 亚洲国产第一区二区三区 |