函數的表示法訓練題

          時間:2021-06-12 19:02:08 試題 我要投稿

          有關函數的表示法訓練題

            1.下列各圖中,不能是函數f(x)圖象的是()

            解析:選C.結合函數的定義知,對A、B、D,定義域中每一個x都有唯一函數值與之對應;而對C,對大于0的x而言,有兩個不同值與之對應,不符合函數定義,故選C.

            2.若f(1x)=11+x,則f(x)等于()

            A.11+x(x≠-1)B.1+xx(x≠0)

            C.x1+x(x≠0且x≠-1)D.1+x(x≠-1)

            解析:選C.f(1x)=11+x=1x1+1x(x≠0),

            ∴f(t)=t1+t(t≠0且t≠-1),

            ∴f(x)=x1+x(x≠0且x≠-1).

            3.已知f(x)是一次函數,2f(2)-3f(1)=5,2f(0)-f(-1)=1,則f(x)=()

            A.3x+2B.3x-2

            C.2x+3D.2x-3

            解析:選B.設f(x)=kx+b(k≠0),

            ∵2f(2)-3f(1)=5,2f(0)-f(-1)=1,

            ∴k-b=5k+b=1,∴k=3b=-2,∴f(x)=3x-2.

            4.已知f(2x)=x2-x-1,則f(x)=________.

            解析:令2x=t,則x=t2,

            ∴f(t)=t22-t2-1,即f(x)=x24-x2-1.

            答案:x24-x2-1

            1.下列表格中的x與y能構成函數的是()

            A.

            x非負數非正數

            y1-1

            B.

            x奇數0偶數

            y10-1

            C.

            x有理數無理數

            y1-1

            D.

            x自然數整數有理數

            y10-1

            解析:選C.A中,當x=0時,y=±1;B中0是偶數,當x=0時,y=0或y=-1;D中自然數、整數、有理數之間存在包含關系,如x=1∈N(Z,Q),故y的值不唯一,故A、B、D均不正確.

            2.若f(1-2x)=1-x2x2(x≠0),那么f(12)等于()

            A.1B.3

            C.15D.30

            解析:選C.法一:令1-2x=t,則x=1-t2(t≠1),

            ∴f(t)=4t-12-1,∴f(12)=16-1=15.

            法二:令1-2x=12,得x=14,

            ∴f(12)=16-1=15.

            3.設函數f(x)=2x+3,g(x+2)=f(x),則g(x)的表達式是()

            A.2x+1B.2x-1

            C.2x-3D.2x+7

            解析:選B.∵g(x+2)=2x+3=2(x+2)-1,

            ∴g(x)=2x-1.

            4.某學生離家去學校,由于怕遲到,所以一開始就跑步,等跑累了再走余下的路程,在下圖中縱軸表示離學校的距離,橫軸表示出發后的時間,則下圖中較符合此學生走法的是()

            解析:選D.由于縱軸表示離學校的距離,所以距離應該越來越小,排除A、C,又一開始跑步,速度快,所以D符合.

            5.如果二次函數的二次項系數為1且圖象開口向上且關于直線x=1對稱,且過點(0,0),則此二次函數的解析式為()

            A.f(x)=x2-1B.f(x)=-(x-1)2+1

            C.f(x)=(x-1)2+1D.f(x)=(x-1)2-1

            解析:選D.設f(x)=(x-1)2+c,

            由于點(0,0)在函數圖象上,

            ∴f(0)=(0-1)2+c=0,

            ∴c=-1,∴f(x)=(x-1)2-1.

            6.已知正方形的周長為x,它的外接圓的半徑為y,則y關于x的函數解析式為()

            A.y=12x(x>0)B.y=24x(x>0)

            C.y=28x(x>0)D.y=216x(x>0)

            解析:選C.設正方形的邊長為a,則4a=x,a=x4,其外接圓的直徑剛好為正方形的一條對角線長.故2a=2y,所以y=22a=22×x4=28x.

            7.已知f(x)=2x+3,且f(m)=6,則m等于________.

            解析:2m+3=6,m=32.

            答案:32

            8.如圖,函數f(x)的圖象是曲線OAB,其中點O,A,B的坐標分別為(0,0),(1,2),(3,1),則f[1f3]的值等于________.

            解析:由題意,f(3)=1,

            ∴f[1f3]=f(1)=2.

            答案:2

            9.將函數y=f(x)的圖象向左平移1個單位,再向上平移2個單位得函數y=x2的圖象,則函數f(x)的解析式為__________________.

            解析:將函數y=x2的圖象向下平移2個單位,得函數y=x2-2的圖象,再將函數y=x2-2的'圖象向右平移1個單位,得函數y=(x-1)2-2的圖象,即函數y=f(x)的圖象,故f(x)=x2-2x-1.

            答案:f(x)=x2-2x-1

            10.已知f(0)=1,f(a-b)=f(a)-b(2a-b+1),求f(x).

            解:令a=0,則f(-b)=f(0)-b(-b+1)

            =1+b(b-1)=b2-b+1.

            再令-b=x,即得f(x)=x2+x+1.

            11.已知f(x+1x)=x2+1x2+1x,求f(x).

            解:∵x+1x=1+1x,x2+1x2=1+1x2,且x+1x≠1,

            ∴f(x+1x)=f(1+1x)=1+1x2+1x

           。(1+1x)2-(1+1x)+1.

            ∴f(x)=x2-x+1(x≠1).

            12.設二次函數f(x)滿足f(2+x)=f(2-x),對于x∈R恒成立,且f(x)=0的兩個實根的平方和為10,f(x)的圖象過點(0,3),求f(x)的解析式.

            解:∵f(2+x)=f(2-x),

            ∴f(x)的圖象關于直線x=2對稱.

            于是,設f(x)=a(x-2)2+k(a≠0),

            則由f(0)=3,可得k=3-4a,

            ∴f(x)=a(x-2)2+3-4a=ax2-4ax+3.

            ∵ax2-4ax+3=0的兩實根的平方和為10,

            ∴10=x21+x22=(x1+x2)2-2x1x2=16-6a,

            ∴a=1.∴f(x)=x2-4x+3.

          【函數的表示法訓練題】相關文章:

          高一數學函數的表示法訓練題練習題目05-30

          《函數的表示法》復習題06-13

          數學函數表示法的教學反思01-19

          反比例函數一次函數訓練題06-04

          《函數的表示方法》說課稿12-01

          《函數及其表示》說課稿11-29

          函數和不等式專項訓練題05-30

          二次函數的基礎訓練題06-20

          高一數學輪函數與方程訓練題05-30

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  亚洲国产精品二区三区 | 午夜福利啪国产 | 亚洲精品国产乱码在线看天美 | 在线中文字幕第一页 | 亚洲午夜久久久精品影院 | 亚洲国产精品一区 |