同角三角函數的基本關系說課稿

          時間:2024-11-28 09:40:59 偲穎 說課稿 我要投稿

          同角三角函數的基本關系說課稿

            作為一名教職工,很有必要精心設計一份說課稿,借助說課稿可以更好地組織教學活動。那么什么樣的說課稿才是好的呢?以下是小編為大家整理的同角三角函數的基本關系說課稿,歡迎閱讀,希望大家能夠喜歡。

          同角三角函數的基本關系說課稿

            同角三角函數的基本關系說課稿1

            一、教材內容及分析

            《同角三角函數關系式》是人教版高中新教材必修4第一章第二節的第二課。本節內容是同角三角函數關系式的運用,三種題型“知值求值”“弦化切”“函數思想的應用”。

            二、學生情況分析

            本課時研究的是同角三角函數關系式的運用、逆用及變形,因此在教學過程中要發展學生的已有認知,發揮知識遷移。

            三、教學目標

            知識目標:

            1掌握同角三角函數關系式的'運用、逆用及變形;

            2掌握同角三角函數關系式的三種題型。

            能力目標:

            滲透分類討論思想、方程思想。

            情感、態度、價值觀目標:

            發展學生研究問題、解決問題的能力。

            四、教學重難點

            重點:

            同角三角函數關系式的運用、逆用及變形;

            難點:

            1.正確判斷三角函數的符號

            2.靈活運用公式做運算

            五、教學方法與策略

            教學中注意用新課程理念處理教材,采用學生自主探索、動手實踐、合作交流、師生互動,教師發揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程。根據本節課內容、高一學生認知特點,本節課采用“啟發探索、講練結合”的方法組織教學。

            六、教學過程

            引入(課件中:)

            兩個公式

            新課

            例1練習1(課件中)

            意圖:加強學生對公式的理解,讓學生學會知值求值,能注意角的取值范圍,正確判斷函數值符號。

            例2練習1(課件中)

            意圖:讓學生掌握齊次式分子分母同除余弦化正切。

            例3練習3(課件中)

            意圖:讓學生理解掌握方程思想的應用。

            小結(課件中)

            作業(課件中)

            同角三角函數的基本關系說課稿2

            一、目標:

            ⒈掌握同角三角函數的基本關系式,理解同角公式都是恒等式的特定意義;

            2通過運用公式的訓練過程,培養學生解決三角函數求值、化簡、恒等式證明的解題技能,提高運用公式的靈活性;

            3注意運用數形結合的思想解決有關求值問題;在解決三角函數化簡問題過程中,注意培養學生思維的靈活性及思維的深化;在恒等式證明的過程中,注意培養學生分析問題的能力,從而提高邏輯推理能力.

            二、教學重、難點

            重點:公式及的推導及運用:(1)已知某任意角的.正弦、余弦、正切值中的一個,求其余兩個;(2)化簡三角函數式;(3)證明簡單的三角恒等式.

            難點:根據角α終邊所在象限求出其三角函數值;選擇適當的方法證明三角恒等式.

            三、學法與教學用具

            利用三角函數線的定義,推導同角三角函數的基本關系式:及,并靈活應用求三角函數值,化減三角函數式,證明三角恒等式等.

            教學用具:圓規、三角板、投影

            四、教學過程

            【創設情境】

            與初中學習銳角三角函數一樣,本節課我們來研究同角三角函數之間關系,弄清同角各不同三角函數之間的聯系,實現不同函數值之間的互相轉化.

            【探究新知】

            探究:三角函數是以單位圓上點的坐標來定義的,你能從圓的幾何性質出發,討論一

            下同一個角不同三角函數之間的關系嗎?

            如圖:以正弦線,余弦線和半徑三者的長構成直角三角形,而且.由勾股定理由,因此,即.

            根據三角函數的定義,當時,有.

            這就是說,同一個角的正弦、余弦的平方等于1,商等于角的正切.

            【例題講評】

            例1化簡:

            解:原式

            例2已知

            解:

            (注意象限、符號)

            例3求證:

            分析:思路1.把左邊分子分母同乘以,再利用公式變形;思路2:把左邊分子、分母同乘以(1+sinx)先滿足右式分子的要求;思路3:用作差法,不管分母,只需將分子轉化為零;思路4:用作商法,但先要確定一邊不為零;思路5:利用公分母將原式的左邊和右邊轉化為同一種形式的結果;思路6:由乘積式轉化為比例式;思路7:用綜合法.

            證法1:左邊=右邊,

            ∴原等式成立

            證法2:左邊==

            =右邊

            證法3:

            證法4:∵cosx≠0,∴1+sinx≠0,∴≠0,

            ∴===1,

            ∴左邊=右邊∴原等式成立.

            例4已知方程的兩根分別是,

            求

            解:

            (化弦法)

            例5已知,

            求

            解:

            【課堂練習】

            化簡下列各式

            1.

            2.

            3.

            練習答案:

            解:

            (1)原式=

            (2)原式=

            【學習小結】

            (1)同角三角函數的關系式的前提是“同角”,因此,.

            (2)利用平方關系時,往往要開方,因此要先根據角所在象限確定符號,即要就角所在象限進行分類討論.

            (1)作業:習題1.2A組第10,13題.

            (2)熟練掌握記憶同角三角函數的關系式,試將關系式變形等,得到其他幾個常用的關

            系式;注意三角恒等式的證明方法與步驟.

            【課后作業】見學案

            【板書設計】略

          【同角三角函數的基本關系說課稿】相關文章:

          《同角三角函數的基本關系》說課稿范文07-12

          高一數學《同角三角函數基本關系》說課稿09-05

          同角三角函數的基本關系教學反思08-14

          同角三角函數的基本關系式總結07-28

          同角三角函數的基本關系教學反思(通用6篇)10-28

          任意角的三角函數說課稿07-27

          《任意角三角函數定義》說課稿08-02

          《銳角三角函數》說課稿02-26

          30°45°60°角的三角函數值說課稿10-28

          高中三角函數說課稿01-26

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  中文字幕乱偷电影 | 亚洲中文在线精品国产 | 亚洲国产AⅤ久久综合 | 亚洲人成网站在线播放动漫 | 午夜成午夜成年片在线观看bd | 亚洲一区二区日韩 |