空間直角坐標系說課稿

          時間:2021-11-12 17:36:20 說課稿 我要投稿

          空間直角坐標系說課稿

            在教學工作者開展教學活動前,就不得不需要編寫說課稿,借助說課稿我們可以快速提升自己的教學能力。那要怎么寫好說課稿呢?以下是小編整理的空間直角坐標系說課稿,歡迎閱讀與收藏。

          空間直角坐標系說課稿

          空間直角坐標系說課稿1

            一、教材分析:

            本節課為高中一年級第二章第三節第一課時的內容。是在學生已經學過的二維的平面直角坐標系的基礎上的推廣。空間直角坐標系是工具,用來解決立體幾何中一些用常規方法難以解決的問題。并且為機械電子專業的學習打下基礎,也為學生將來的后續學習作好準備。

            1、知識目標:

            (1)、使學生能通過用比較的數學思想方法得出空間直角坐標系的定義、建立方法、以及空間的點的坐標確定方法。

            (2)、從求空間點的坐標的過程進一步培養學生的空間思維的能力

            2、能力目標:培養學生的探究性思維能力。

            3、教學重點和難點:

            (1)、教學重點:在空間直角坐標系中,確定點的坐標。

            (2)、教學難點:通過建立適當的直角坐標系,確定空間點的坐標。相關應用。

            二、學生分析

            學生已經對立體幾何以及平面直角坐標系的相關知識有了較為全面的認識,學習《空間直角坐標系》有了一定的基礎。這對于本節內容的學習是很有幫助的。

            部分同學仍然會在空間思維與數形結合方面存在困惑。

            三、教法分析:

            (1)本節課的內容是非常抽象的,試圖通過教師的講解而讓學生聽懂、記住、會用是徒勞的,必須突出學生的主體地位,通過學生的自主學習與和同學的合作探究,讓學生親手實踐,這樣學生才能獲得感性認識,從而為后續的學習并上升到理性認識奠定基礎

            (2)采用啟發式教學方法,通過激發學生學習的求知欲望,使學生主動參與教學實踐活動。

            (3)創設學習情境,營造氛圍,精心設計問題,讓學生在整個學習過程中經常有自我展示的機會,并有經常性的成功體驗,增強學生的學習信心,

            四、學法分析:

            從學生已有的知識和生活經驗出發,讓學生經歷知識的形成過程。

            通過閱讀教材,并結合空間坐標系模型,模仿例題,解決實際問題。

            五、教學過程:

            (一)、引入新課:

            1、回顧舊知識:平面直角坐標系的建立方法,點的坐標的確定過程、表示方法,平面內的點與坐標之間的一一對應關系,

            2、提出問題,引入新課。

            (二)、新授:

            1、空間直角坐標系的建立。

            2、與平面直角坐標系內點的坐標的確定過程進行比較,討論空間直角坐標系內點的坐標的確定過程。

            3、例題與練習:

            (1)例1、在空間直角坐標系中,作出點P(4,2,3)

            練習:在空間直角坐標系中,作出點Q(3,6,7),M(5,0,2)

            (2)例2、已知長方體ABCD—A1B1C1D1的邊長為AB =10,AD =6, AA1 =8 以這個長方體的頂點A為坐標原點,以射線AB 、AD 、AA1分別為ox、oy、oz軸的正半軸,建立空間直角坐標系,求長方體各頂點的坐標。

            練習:V-ABCD為正四棱錐,O為底面中心,若AB=2,VO=3,試建立空間直角坐標系,并確定各頂點的坐標。

            思考題:建立適當的直角坐標系,確定棱長為3的正四面體各頂點的坐標。

            六、小結:

            七、布置作業:113頁1、2、3

          空間直角坐標系說課稿2

            今天我說課的內容是空間直角坐標系,下面我分別從教材分析、教學目標的確定、教學方法的選擇和教學過程的設計這四個方面來闡述我對這節課的教學設想。

            一、教材分析

            本節內容選自人民教育出版社出版的普通高中課程標準實驗教科書《數學》必修二的第四章第3節,屬于解析幾何領域的知識,它是平面直角坐標系的進一步推廣,是學生思維從一維二維空間到三維空間的過渡。為以后在選修中利用空間向量解決空間中的平行、垂直以及空間中的夾角與距離問題的打好基礎;而且必修二第三、四章是平面解析幾何的基礎內容,本節“空間直角坐標系”的內容是空間立體幾何的基礎,與平面幾何的內容共同體現了“用代數方法解決幾何問題”的解析幾何思想。

            本小節內容主要包含空間直角坐標系的建立、空間中點與其坐標的一一對應關系、以及如何由空間中點的位置確定點的坐標或由點的坐標確定點的位置等問題。

            在本節課中教學重點是三維空間坐標系的建立過程,以及空間中點與其坐標的一一對應關系的理解;教學難點和關鍵是理解空間直角坐標系的相關概念,以及空間中點與其坐標的一一對應關系。

            基于以上對教材的認識,根據數學課程標準的“學生是數學學習的主人,教師是數學學習的組織者、引導者與合作者”這一基本理念,考慮到學生已有的認知結構和心理特征,制定如下的教學目標:

            二、教學目標的確定

            知識與技能:

            (1)理解空間直角坐標系的相關概念,空間中點的坐標及其坐標對應的點;

            (2)理解空間直角坐標系的建立過程以及空間中點與坐標一一對應的關系。

            過程與方法:

            (1)通過空間直角坐標系的建立,體會由一維空間到二維空間再到三維空間的拓展和推廣,培養學生利用類比的數學思想方法探索空間直角坐標系;

            (2)通過空間點與坐標的對應關系,進一步加強學生對“數形結合”思想方法的認識。

            情感態度與價值觀:

            體會到數學的嚴謹的思維邏輯以及抽象概括力。

            三、教學方法的選擇

            本節內容是高中數學中概念原理的教學,根據布魯納的發現學習理論,本節課主要采用了啟發式、探究式的教學方法,通過激發學生解決問題的欲望,使學生主動參與教學實踐活動。采用類比的數學教學手段,引導學生實現了從一維二維空間坐標系到三維空間坐標系的變化。再進一步通過教師引導提問,造成學生在認知上的沖突,產生疑惑,從而激發學生探索新知的欲望,之后進一步啟發誘導學生分析,理解,概括從而得出原理解決問題,最終形成對空間直角坐標系的概念認知,獲得方法,培養能力。

            在整個教學過程中,內容由淺入深、由已知到未知進行探究,不僅使學生在整個學習探究過程中了解到知識的發生、發展的過程,也使學生嘗到了成功解決問題的喜悅,對于增強學生學習數學的`信心,起到了很好的作用。

            在教學中教師利用計算機多媒體軟件Powerpoint、幾何畫板等輔助教學,充分發揮其快捷、生動、形象的特點。

            四、教學過程的設計

            (一)情景引入,回顧舊知

            教師讓學生描述自己在教室中的位置,學生分小組開展討論。學生表述的意見會不一樣,很快學生就可以感受到需要建立統一的平面坐標系,才能說清楚每個學生具體位置的問題。接著提問,讓學生說出自己鼻子在教室里的位置。這時平面直角坐標系已經無法很好地進行描述鼻子的位置,因為每個人的高度不同,鼻子距離地板的高度不同。讓學生明白,平面坐標系已經不能達到這個要求,需要多加一個坐標軸,用三維立體坐標來標注學生鼻子到地板的距離或鼻子到天花板的距離。從而讓學生體會到建立統一的三維坐標的重要性。

            教師繼續提問引發思考:在教室里我們可以建立某種坐標系去記錄每個人的位置,如果到其他地方又應該如何建立呢?是不是有一種通常的描述空間中物體方法?

            首先為了描述方便,把空間中的物體看成是一個點。

            再從一維二維空間中點的表示過渡到三維空間中點的表示。

            我們推測空間中任意一點也應該可用有序實數組(x,y,z)表示。

            (二)探索新知,理解新知

            聯系實際,教師引導學生建立空間直角坐標系,引出空間直角坐標系的相關概念。并且為了方便,一般建立右手直角坐標系,教師在演示建立坐標系的過程并給出建立時應該注意的地方。在解決空間中點與坐標之間的一一對應關系時,教師引導學生進行證明,使學生對點與坐標的一一對應關系有深刻的認識。

            (三)解決問題,鞏固新知

            教師及時給出例題,并利用解決空間中點與坐標之間的一一對應關系時的方法,解決問題。

            例:在長方體OABC—D?A?B?C?中,|OA|=3,|OC|=4,|OD|=2,以O為坐標原點建立右手直角坐標系。寫出D?,C?,A?,B?四點的坐標,并在圖中畫出點P(8,2,3)。

            (四)小結及作業

            老師帶領學生復習本節課的內容:

            ①聯系實際及所學知識,建立空間直角坐標系;

            ②空間直角坐標系的相關概念學習(坐標原點、坐標軸、坐標平面);

            ③一般地,為了方便,我們建立右手直角坐標系,并且掌握如何畫右手直角坐標系;

            ④理解空間中點與坐標的一一對應關系;

            ⑤應用,已知空間中的點可以寫出它的坐標,已知坐標可以畫出相應的點。

            布置本節課的作業:136頁第一第二第三題

            以上所說只是我預設的一種方案,但課堂是千變萬化的,會隨著學生和教師的臨時發揮而隨機生成。預設效果如何,最終還是有待于真正課堂教學實踐的檢驗。

          空間直角坐標系說課稿3

            一、 教材分析:

            1、教材的地位和作用

            本節課為高中一年級第四章《平面解析幾何初步》的第三節第一,二課時的內容。

            本節課是在學生已經學過的二維的平面直角坐標系的基礎上的推廣。

            學生在九年制義務教育階段已經畫過長方體的直觀圖,在高一第一章中又畫過棱柱與棱錐的直觀圖,在此基礎上,我只作了適當的點撥,學生就自然而然地得出了空間直角坐標系的畫法。

            在研究過程中,我充分運用了類比、化歸、數形結合等數學思想方法,有效地培養學生的思想品質。在求空間直角坐標系中點的坐標時,學生不僅會很自然地運用類比的思想方法,同時也鍛煉了他們的空間思維能力。這節課是為以后的《空間向量及其運算》打基礎的。同時,在第二章《空間中點、直線、平面的位置關系》第一節《異面直線》學習時,有些求異面直線所成的角的大小,借助于空間向量來解答,要容易得多,所以,本節課為溝通高中各部分知識,完善學生的認知結構,起到很重要的作用。

            2、教學目標

            根據課標的要求和學生的實際水平,確定了本節課的教學目標

            a在知識上:1,掌握空間直角坐標系的有關概念;會根據坐標找相應的點,會寫一些簡單幾何體的有關坐標。

            2,掌握空間兩點的距離公式,會應用距離公式解決有關問題。

            b在能力上:通過空間直角坐標系的建立,空間兩點距離公式的推導,使學生初步意識到:將空間問題轉化為平面問題是解決空間問題的基本思想方法;通過本節的學習,培養學生類比,遷移,化歸的能力。

            c在情感上:解析幾何是用代數方法研究解決幾何問題的一問數學學科,在教學過程中要讓學生充分體會數形結合的思想,進行辯證唯物主義思想的教育和對立統一思想的教育;培養學生積極參與,大膽探索的精神。

            3、教學重點和難點

            (1)空間直角坐標系的有關概念

            (2)一些簡單幾何題頂點坐標的寫法;

            (3)空間兩點的距離公式的推導

            二、學情分析

            對于高一學生,已經具備了一定知識積累(如數軸上一點坐標用實數表示;直角坐標平面上一點坐標用有序實數(x,y)表示;及其平面內兩點間的距離公式),有了這些知識的儲備,今天來學習空間直角坐標系就容易的多。所以我在授課時注重類比思想的應用以符合學生的現有知識水平的特點,從而促進思維能力的進一步發展。

            三、 教學方法和教材處理:

            對于高一學生,已經具備了一定知識積累。所以我在授課時注重引導、啟發、總結和歸納,把類比思想,化歸思想貫穿始終以符合學生的現有知識水平的特點,從而促進思維能力的進一步發展。

            四、 教學流程圖:

            (一)基礎回顧

            數軸上的點集 實數集

            若數軸有兩點:

            則: (向量)

            中點

            平面:

            平面上的點集 有序實數對

            若點P與實數對對應,則叫做P點的坐標。

            其中,是如何確定的?

            平面內兩點的距離公式:

            中點公式:

            則中點M的坐標為

            (二)新課導入

            大家先來思考這樣一個問題,天上的飛機,飛機的速度非常的快,即使民航飛機速度也非常快,有很多飛機時速都在1000km以上,而全世界又這么多,這些飛機在空中風馳電掣,速度是如此的快,豈不是很容易撞機嗎?但事實上,飛機的失事率是極低的,比火車,汽車要低得多,原因是,飛機都是沿著國際統一劃定的航線飛行,而在劃定某條航線時,不僅要指出航線在地面上的經度和緯度,還要指出航線距離地面的高度。

            確定空間點的位置需要幾個量?三個。

            這就是本節課我們要研究的問題———空間直角坐標系。

            閱讀課本134-135例一以前的內容。

            一,填充下面的表格:

            數軸上的點

            平面上的點

            空間中的點

            借助的工具

            數軸

            直角坐標系

            表示

            實數a

            (x,y)

            距離

            PQ=

            AB=

            中點

            體現類比思想。

            二,回答下列問題:

            1,空間直角坐標系如何建立,及其相關定義,注意事項。

            2,空間直角坐標系中坐標軸上的點如何求?坐標平面上的點如何求?

            3,歸納總結:坐標軸上的點有什么特點?坐標平面上的點有什么特點?

            4,空間中一點如何求?用了什么辦法?體現什么思想?

            5,空間中兩點的距離如何求?(類比,遷移,化歸能力的培養)

            自主測評

            1.點P(-2,0,3)所在的位置是()

            A、y軸上 B、z軸上 C 、xoz平面上 D、yoz平面上

            2. z軸上的點的坐標特點是()

            A、豎坐標為0 B、橫、縱坐標都是0 C、橫坐標都是0 D、橫、縱、豎坐標不可能都是0

            3.在平面xOy內有兩點A(-2,4,0),B(3,2,0),則AB的中點坐標是_____(1.5,3,0)____.

            4.點P(3,4,5)關于原點的對稱點是_(-3,-4,-5)_______.

            (三)例題探究

            例一可以放給學生看。

            引申拓展1:已知正方體ABCD——A1B1C1D1的棱長為2,建立如圖所示的不同的空間直角坐標系,試分別寫出正方體各頂點的坐標。(例1圖)

            分析:本題是教材例題1的拓展,同一空間圖形,由于建立的空間直角坐標系的不同,而使得圖形中同一點的坐標不同.

            解法:①∵D是坐標原點,A、C、D1分別在x軸、y軸、Z軸上的正半軸上,又正方體棱長為2,

            ∴D(0,0,0)、A(2,0,0)、C(0,2,0)、D(0,0,2)

            ∵B點在xOy面上,它在x、y軸上的射影分別是A、C,

            ∴B(2,2,0),同理,A1(2,0,2)、C(0,2,2);

            ∵B1在xOy平面上的射影是B,在z軸上的射影是D1,

            ∴B1(2,2,2).

            ②方法同①,可求得A1 (2,0,0)、B1(2,2,0)、C1

            (0,2,0)、D1(0,0,0)、A(2,0,-2)、B(2,2,-2)、C(0,2,-2)、D(0,0,-2).

            例2可以放給學生看(本身也可拓展)

            引申拓展2:如圖,在長方體ABCD—A1B1C1D1中,|AB|=6,|AD|=4,|AA1|=3,EF分別是BB1和D1B1的中點,棱長為1,求E、F點的坐標.(例2圖)

            分析:平面上的中點坐標公式可推廣到空間內,即設A(x1,y1,z1),B(x2,y2,z2)

            則AB的中點坐標為(,,). 在空間直角坐標系中確定點的坐標時,經常用到此公式.

            解:方法一:從圖中可以看出E點在xOy平面上的射影為B,而B點的坐標為(4,6,0),E的豎坐標為,所以E點的坐標為(4,6,),F點在xOy平面上的射影為G,而G點的坐標為(2,3,0),F點的豎坐標為3,所以F點的坐標為(2,3,3).

            方法二:在圖中條件可以得到B1(4,6,3),D1(0,0,3),B(4,6,0),E為BB1的中點,F為O1B1的中點,由中點坐標公式得E點的坐標為(,,),F點的坐標為(,,)=(2,3,3).

            引申拓展3:如圖,長方體ABCD-A1B1C1D1中,AB=BC=2,DD1=3,點M是B1C1的中點,點N是AB的中點,建立如圖所示的空間直角坐標系,求線段MN的長度.

            解析:根據點的特殊位置,設出其坐標,代入兩點間的距離公式即可.

            解:∵M(1,2,3),N(2,1,0)

            ∴|MN|=

            即線段MN的長度為 .

            (例1圖)

            引申拓展4:在空間直角坐標中平面x0y內的直線x+y=1上確定一點M,使它到B(6,5,1)的距離最小.

            解析:利用兩點間的距離公式求最值,通常轉化為二次函數最值問題.

            解:由條件可設M(x,1-x,0)則

            |MB|min=

            =

            所以,當x=1時,|MB|=,此時M(1,0,0).

            (四)鞏固提高

            A. 基礎鞏固

            1.點P(1,1,1)關于x0z平面的對稱點是( )

            A、(1,-1,1) B、(-1,-1,1) C、 (1,1,-1) D(-1,-1,-1)

            2. 如圖所示,正方體的棱長為1,點A是其一棱的中點,則點A在空間直角坐標系中的坐標是( )

            A、(,,1) B、 (1,1,)

            C、 (,1,) D、 (1,,1)

            3.點P(a,b,c)到坐標平面zOx的距離為_______.

            4.如圖,在長方體OABC-D1A1B1C1中,

            |OA|=6,|OC|=8,|OD1|=5,

            D1、C、A1、B1四點的坐標分別是_________.

            (第3題圖)

            B. 能力測控

            5.以正方體ABCD—A1B1C1D1的棱AB、AD、AA1所在的直線為坐標軸建立空間直角坐標,且正方體的棱長為一個單位長度,則棱CC1的中點坐標為( ).

            A.(,1,1) B.(1,,1)

            C.(1,1,) D.(,,1)

            6.在空間直角坐標系中,點P(-2,1,4)關于x軸對稱點的坐標是( )

            A、(-2,1,1) B、(-2,-1,-4)

            C、(2,-1,4) D、(2,1,-4)

            7.在空間直角坐標系中,點P(-2,1,4)關于點M(2,-1,-4)的對稱點的坐標為 .

            8.在空間直角坐標系中作出點A(4,-4,3).

            C.拓展提升

            9.如圖,已知四面體P-ABC中,PA、PB、PC兩兩垂直,

            (第9題圖)

            PA=PB=2,PC=1,E是AB的中點,試建立空間直角坐

            標系并寫出P、A、B、C、E的坐標.

            10.正方形ABCD-A1B1C1D1的棱長為1,以D為原點,以正方體的三條棱DA、DC、DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標系,若點P在正方體的側面BCC1B1及其邊界上運動,并且總是保持AP⊥BD1,則下列點P的坐標①(1,1,1), ②(0,1,0) , ③(1,1,0) , ④(0,1,1), ⑤(,1, )中哪個是正確的?

            (五)學后反思

            本節課主要采用了誘思探究的教學方法,通過激發學生學習的求知欲望,使學生主動參與教學實踐活動。首先,為了使學生比較順利地從平面到空間的變化,即從二維向量到三維向量的變化,我采用了類比的數學教學手段,順利地引導學生實現了這一轉化,同時也引起了學生的興趣。然后,從與平面直角坐標系內點的坐標是借助一個長方形得到的過程,使學生順理成章地想到空間點的坐標可能是通過借助長方體得到的,讓學生親手實踐后,證實了這一結論,增強了學生學習的信心。此后,馬上將書上的例1作為學生的口答練習,(一般學生都能回答正確)然后,及時提出問題;如果改變坐標系的確定方法,點的坐標會發生什么變化?經過思考,學生一般也能回答正確,同時,又讓學生明確了:坐標系建立的不同,得到的點的坐標也不同。

            同樣的從在平面直角坐標系內求兩點間的距離公式的思路來求空間內兩點間的距離。

            在整個教學過程中,內容由淺入深、環環相扣,不僅使學生在學習過程中了解了知識的發生、發展的過程,也使學生嘗到了成功的喜悅,對于增強學生的學習信心,起到了很好的作用。

            五、板書設計

            文檔內含有圖片、公式、文本框、特殊符號網頁頁面無法正確顯示,請點擊免費下載完整WORD文檔。

          【空間直角坐標系說課稿】相關文章:

          平面直角坐標系說課稿11-02

          體積與空間中的生命說課稿11-03

          直角生活哲理作文07-28

          空間向量在平面直線、空間直線位置關系中的應用說課稿11-02

          城市功能分區和空間結構說課稿11-02

          城市內部空間結構說課稿11-02

          《認識直角、銳角、鈍角》的教學反思范文12-23

          直角轉彎的考試技巧及注意事項07-20

          關于笛卡爾和直角坐標的故事04-08

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  日本国产欧美大码A视频 | 午夜精品福利波多野结衣 | 亚洲国产日本午夜aⅴ | 欧美v日韩v亚洲v最新在线 | 一区二区久久综合网 | 精品国产一区二区三区在线 |