高一等差數列說課稿

          時間:2022-12-13 09:24:31 說課稿 我要投稿

          高一等差數列說課稿

            作為一名教職工,通常需要用到說課稿來輔助教學,認真擬定說課稿,如何把說課稿做到重點突出呢?以下是小編為大家收集的高一等差數列說課稿,僅供參考,大家一起來看看吧。

          高一等差數列說課稿

          高一等差數列說課稿1

            一、教材分析

            1、教材的地位和作用:

            數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面, 數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。

            2、教學目標

            根據教學大綱的要求和學生的實際水平,確定了本次課的教學目標

            a在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想;初步引入“數學建模”的思想方法并能運用。

            b在能力上:培養學生觀察、分析、歸納、推理的能力;在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

            c在情感上:通過對等差數列的研究,培養學生主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。

            3、教學重點和難點

            根據教學大綱的要求我確定本節課的教學重點為:

           、俚炔顢盗械母拍。

            ②等差數列的通項公式的推導過程及應用。

            由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數列的同項公式是這節課的一個難點。同時,學生對“數學建!钡乃枷敕椒ㄝ^為陌生,因此用數學思想解決實際問題是本節課的另一個難點。

            二、學情分析

            對于三中的高一學生,知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展。

            二、教法分析

            針對高中生這一思維特點和心理特征,本節課我采用啟發式、討論式以及講練結合的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題。

            三、學法指導

            在引導分析時,留出學生的思考空間,讓學生去聯想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

            四、教學程序

            本節課的教學過程由(一)復習引入(二)新課探究(三)應用例解(四)反饋練習(五)歸納小結(六)布置作業,六個教學環節構成。

            (一)復習引入:

            1.從函數觀點看,數列可看作是定義域為__________對應的一列函數值,從而數列的通項公式也就是相應函數的______ 。(N﹡;解析式)

            通過練習1復習上節內容,為本節課用函數思想研究數列問題作準備。

            2. 小明目前會100個單詞,他她打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內他的單詞量逐日依次遞減為: 100,98,96,94,92 ①

            3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內他的單詞量逐日依次遞增為 5,10,15,20,25 ②

            通過練習2和3 引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創設問題情境,激發學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養學生由具體到抽象、由特殊到一般的認知能力。

            (二) 新課探究

            1、由引入自然的給出等差數列的概念:

            如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列, 這個常數叫做等差數列的公差,通常用字母d來表示。強調:

           、 “從第二項起”滿足條件;

            ②公差d一定是由后項減前項所得;

           、勖恳豁椗c它的前一項的'差必須是同一個常數(強調“同一個常數” );

            在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:

            an+1-an=d (n≥1)

            同時為了配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。

            1. 9 ,8,7,6,5,4,……;√ d=-1

            2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

            3. 0,0,0,0,0,0,…….; √ d=0

            4. 1,2,3,2,3,4,……;×

            5. 1,0,1,0,1,……×

            其中第一個數列公差<0,>0,第三個數列公差=0

            由此強調:公差可以是正數、負數,也可以是0

          高一等差數列說課稿2

            一、教材分析。

            1、教學目標:

            (1)理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想;

           。2)培養學生觀察、分析、歸納、推理的能力;在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

           。3)通過對等差數列的研究,培養學生主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。

            2、教學重點和難點:

           。1)等差數列的概念。

           。2)等差數列的通項公式的推導過程及應用。用不完全歸納法推導等差數列的通項公式。

            二、教法分析。

            采用啟發式、討論式以及講練結合的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題。

            三、教學程序。

            本節課的教學過程由:(一)復習引入;(二)新課探究;(三)應用例解;(四)反饋練習;(五)歸納小結;(六)布置作業,六個教學環節構成。

           。ㄒ唬⿵土曇耄

            1、全國統一鞋號中成年女鞋的各種尺碼(表示鞋底長,單位是cm)分別是21,22,23,24,25。

            2、某劇場前10排的座位數分別是:38,40,42,44,46,48,50,52,54,56。

            3、某長跑運動員7天里每天的訓練量(單位:m)是:7500,8000,8500,9000,9500,10000,10500。

            共同特點:從第2項起,每一項與前一項的差都等于同一個常數。

           。ǘ 新課探究。

            1、給出等差數列的概念:

            如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列, 這個常數叫做等差數列的公差,通常用字母d來表示。強調:

            (1)“從第二項起”滿足條件;

           。2)公差d一定是由后項減前項所得;

           。3)公差可以是正數、負數,也可以是0。

            2、推導等差數列的通項公式:若等差數列{an }的首項是 ,公差是d, 則據其定義可得:— =d 即: = +d;– =d 即: = +d = +2d;– =d 即: = +d = +3d……進而歸納出等差數列的通項公式:= +(n—1)d

            此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法——————迭加法:– =d;– =d;– =d……– =d。

            將這(n—1)個等式左右兩邊分別相加,就可以得到 – = (n—1) d即 = +(n—1) d

            當n=1時,上面等式兩邊均為 ,即等式也是成立的,這表明當n∈ 時上面公式都成立,因此它就是等差數列{an }的通項公式。

            接著舉例說明:若一個等差數列{ }的首項是1,公差是2,得出這個數列的通項公式是: =1+(n—1)×2 , 即 =2n—1 以此來鞏固等差數列通項公式運用

           。ㄈ⿷门e例。

            這一環節是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的 、d、n、 這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另一部分量。

            例1 :

           。1)求等差數列8,5,2,…的第20項;

           。2)—401是不是等差數列—5,—9,—13,…的項?如果是,是第幾項?

            第二問實際上是求正整數解的問題,而關鍵是求出數列的通項公式。

            例2:

            在等差數列{an}中,已知 =10, =31,求首項 與公差d。

            在前面例1的基礎上將例2當作練習作為對通項公式的鞏固。

            例3:

            梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。

           。ㄋ模┓答伨毩暋

            1、小節后的練習中的第1題和第2題(要求學生在規定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

            2、若數列{ } 是等差數列,若 = k ,(k為常數)試證明:數列{ }是等差數列。

            此題是對學生進行數列問題提高訓練,學習如何用定義證明數列問題同時強化了等差數列的概念。

           。ㄎ澹w納小結 。(由學生總結這節課的收獲)

            1、等差數列的概念及數學表達式。

            強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數

            2、等差數列的通項公式 = +(n—1) d會知三求一

            (六) 布置作業。

            1、必做題:課本P114 習題3。2第2,6 題。

            2、選做題:已知等差數列{ }的首項 = —24,從第10項開始為正數,求公差d的取值范圍。(目的:通過分層作業,提高同學們的求知欲和滿足不同層次的學生需求)

            四、板書設計。

            在板書中突出本節重點,將強調的地方如定義中,“從第二項起”及“同一常數”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現了精講多練的教學方法。

          高一等差數列說課稿3

            一、教材分析

            1、教學目標:

            A.理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想;

            B.培養學生觀察、分析、歸納、推理的能力;在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

            C通過對等差數列的研究,培養學生主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。

            2、教學重點和難點

           、俚炔顢盗械母拍睢

           、诘炔顢盗械耐椆降耐茖н^程及應用。用不完全歸納法推導等差數列的通項公式。

            二、教法分析

            采用啟發式、討論式以及講練結合的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題。

            三、教學程序

            本節課的教學過程由(一)復習引入(二)新課探究(三)應用例解(四)反饋練習(五)歸納小結(六)布置作業,六個教學環節構成。

            (一)復習引入:

            1.全國統一鞋號中成年女鞋的各種尺碼(表示鞋底長,單位是cm)分別是

            21,22,23,24,25,

            2.某劇場前10排的座位數分別是:

            38,40,42,44,46,48,50,52,54,56。

            3.某長跑運動員7天里每天的訓練量(單位:m)是:

            7500,8000,8500,9000,9500,10000,10500。

            共同特點:從第2項起,每一項與前一項的差都等于同一個常數。

            (二)新課探究

            1、給出等差數列的概念:

            如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,這個常數叫做等差數列的公差,通常用字母d來表示。強調:

           、 “從第二項起”滿足條件;

           、诠頳一定是由后項減前項所得;

            ③公差可以是正數、負數,也可以是0。

            2、推導等差數列的通項公式

            若等差數列{an }的首項是,公差是d,則據其定義可得:

            - =d即:= +d

            – =d即:= +d = +2d

            – =d即:= +d = +3d

            ……

            進而歸納出等差數列的通項公式:

            = +(n-1)d

            此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法------迭加法:

            – =d

            – =d

            – =d

            ……

            – =d

            將這(n-1)個等式左右兩邊分別相加,就可以得到– = (n-1) d即= +(n-1) d

            當n=1時,上面等式兩邊均為,即等式也是成立的,這表明當n∈時上面公式都成立,因此它就是等差數列{an }的通項公式。

            接著舉例說明:若一個等差數列{}的首項是1,公差是2,得出這個數列的通項公式是:=1+(n-1)×2,即=2n-1以此來鞏固等差數列通項公式運用

            (三)應用舉例

            這一環節是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的、d、n、這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另一部分量。

            例1 (1)求等差數列8,5,2,…的第20項;

            (2)-401是不是等差數列-5,-9,-13,…的項?如果是,是第幾項?

            第二問實際上是求正整數解的問題,而關鍵是求出數列的通項公式

            例2在等差數列{an}中,已知=10,=31,求首項與公差d。

            在前面例1的基礎上將例2當作練習作為對通項公式的鞏固

            例3梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。

            (四)反饋練習

            1、小節后的練習中的第1題和第2題(要求學生在規定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

            2、若數列{ }是等差數列,若= k,(k為常數)試證明:數列{ }是等差數列。

            此題是對學生進行數列問題提高訓練,學習如何用定義證明數列問題同時強化了等差數列的概念。

            (五)歸納小結 (由學生總結這節課的收獲)

            1.等差數列的概念及數學表達式。

            強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數

            2.等差數列的通項公式= +(n-1) d會知三求一

            (六)布置作業

            必做題:課本P114習題3.2第2,6題

            選做題:已知等差數列{ }的首項= -24,從第10項開始為正數,求公差d的取值范圍。(目的:通過分層作業,提高同學們的求知欲和滿足不同層次的學生需求)

            四、板書設計

            在板書中突出本節重點,將強調的地方如定義中,“從第二項起”及“同一常數”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現了精講多練的教學方法。

          高一等差數列說課稿4

            一、教材分析

            1、教材的地位和作用:

            數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。

            2、教學目標

            根據教學大綱的要求和學生的實際水平,確定了本次課的教學目標

            a在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想;初步引入“數學建!钡乃枷敕椒ú⒛苓\用。

            b在能力上:培養學生觀察、分析、歸納、推理的能力;在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

            c在情感上:通過對等差數列的研究,培養學生主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。

            3、教學重點和難點

            根據教學大綱的要求我確定本節課的教學重點為:①等差數列的概念。②等差數列的通項公式的推導過程及應用。

            由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數列的同項公式是這節課的一個難點。同時,學生對“數學建模”的思想方法較為陌生,因此用數學思想解決實際問題是本節課的另一個難點。

            二、學情教法分析:

            對于三中的高一學生,知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展。

            針對高中生這一思維特點和心理特征,本節課我采用啟發式、討論式以及講練結合的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題。

            三、學法指導:

            在引導分析時,留出學生的思考空間,讓學生去聯想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

            四、教學程序

            本節課的教學過程由(一)復習引入(二)新課探究(三)應用舉例(四)反饋練習(五)歸納小結(六)布置作業,六個教學環節構成。

            (一)復習引入:

            1.從函數觀點看,數列可看作是定義域為__________對應的一列函數值,從而數列的通項公式也就是相應函數的______。(N﹡;解析式)

            通過練習1復習上節內容,為本節課用函數思想研究數列問題作準備。

            2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內他的單詞量逐日依次遞減為:100,98,96,94,92 ......

            3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內他的單詞量逐日依次遞增為5,10,15,20,25 ......

            通過練習2和3引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創設問題情站境,激發學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養學生由具體到抽象、由特殊到一般的認知能力。

            (二) 新課探究

            1、由引入自然的給出等差數列的概念:

            如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列。這個常數叫做等差數列的公差,通常用字母d來表示。強調:① “從第二項起”滿足條件;②公差d一定是由后項減前項所得;③每一項與它的前一項的差必須是同一個常數(強調“同一個常數” )。

            在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:an+1-an=d (n≥1)同時為了配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。

            1. 9 ,8,7,6,5,4,……;√ d=-1

            2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

            3. 0,0,0,0,0,0,…….; √ d=0

            4. 1,2,3,2,3,4,……;×

            5. 1,0,1,0,1,……×

            其中第一個數列公差<0,>0,第三個數列公差=0

            由此強調:公差可以是正數、負數,也可以是0

          【高一等差數列說課稿】相關文章:

          高一等差數列說課稿12-13

          高一數學等差數列說課稿07-28

          高一數學《等差數列》說課稿02-12

          高一數學:等差數列說課稿12-06

          高一數學《等差數列》說課稿12-08

          《等差數列》說課稿11-03

          等差數列的說課稿12-05

          等差數列說課稿06-11

          《等差數列》說課稿06-24

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  日本特级婬片免费看 | 在线观看片免费观看不卡 | 亚洲人成在线88 | 亚洲欧洲中文日韩AV乱 | 日韩中文字幕理论在线 | 亚洲影院中文字幕 |