1、函數零點的定義:對于函數 $y=f(x)$,我們把使$f(x)=0$的實數$x$叫做函數$y=f(x)$的零點。
2、函數零點的意義:函數$y=f(x)$的零點就是方程$f(x)=0$的實數根,也就是函數$y=f(x)$的圖象與$x$ 軸交點的橫坐標。">

          零點的定義與判定定理

          回答
          瑞文問答

          2024-07-31

          零點的定義與判定定理
          1、函數零點的定義:對于函數 $y=f(x)$,我們把使$f(x)=0$的實數$x$叫做函數$y=f(x)$的零點。
          2、函數零點的意義:函數$y=f(x)$的零點就是方程$f(x)=0$的實數根,也就是函數$y=f(x)$的圖象與$x$ 軸交點的橫坐標。

          擴展資料

            3、函數零點的分類

            (1) 變號零點:零點附近兩側的函數值異號。

            (2) 不變號零點:零點附近兩側的函數值同號。

            4、函數零點存在性定理:一般地,如果函數$y=f(x)$在區間[a,b]上的圖象是連續不斷的一條曲線,并且有$f(a) cdot f(b)<0$,那么,函數$y=f(x)$在區間(a,b)內有零點,即存在$c in (a,b)$,使得$f(c)=0$,這個$c$也就是方程$f(x)=0$的根。

            5、判斷函數零點個數的常用方法

            (1) 解方程$f(x)=0$,方程$f(x)=0$的不同解的個數就是函數$f(x)$零點的個數。

            (2) 直接作出函數$f(x)$的圖象,其圖象與$x$軸交點的個數就是函數$f(x)$的零點的個數。

            (3) 化函數的零點個數問題為方程$g(x)=h(x)$的解的個數問題,在同一坐標系下作出$y=g(x)$和$y=h(x)$的圖象,兩函數圖象的交點個數就是函數$f(X)$的零點的個數。

            (4) 若證明一個函數的零點唯一,也可先由零點存在性定理判斷出函數有零點,再證明該函數在定義域內單調。

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  亚洲成在人天堂在线 | 亚洲日韩性一区二区三区 | 中文字幕丝袜熟女系列 | 天天夜夜综合色鬼久久 | 天天综合网久久综合免费成人 | 日韩综合网在线视频免费 |