狄利克雷函數為什么是周期函數

          回答
          瑞文問答

          2024-07-11

          狄利克雷函數是周期函數證明:取T為任意一個確定的有理數,則當x是有理數時f(x)=1,且x+T是有理數,故f(x+T)=1,即f(x)=f(x+T);當x是無理數時,f(x)=0,且x+T是無理數,故有f(x+T)=0,即f(x)=f(x+T)。綜上,狄利克雷函數是周期函數。

          擴展資料

            證明過程:

            狄利克雷函數即f(x)=1(當x為有理數);f(x)=0(當x為無理數);而周期函數的定義是對任意x,若f(x)=f(x+T),則f(x)是周期為T的周期函數。

            顯然,取T為任意一個確定的有理數,則當x是有理數時f(x)=1,且x+T是有理數,故f(x+T)=1,即f(x)=f(x+T);當x是無理數時,f(x)=0,且x+T是無理數,故有f(x+T)=0,即f(x)=f(x+T)。綜上,狄利克雷函數是周期函數,其周期可以是任意個有理數,所以沒有最小正周期。

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  亚洲欧美日韩综合久久久久久 | 午夜福利在线永久视频 | 在线亚洲97se亚洲综合在线 | 中文字幕久久精品一区二区 | 一本色道综合久久加勒比 | 精品一区二区亚洲一二三区 |