初二數學期末知識點總結

          時間:2022-11-05 08:17:18 知識點總結 我要投稿

          初二數學期末知識點總結

            總結是對某一階段的工作、學習或思想中的經驗或情況進行分析研究的書面材料,它可以提升我們發現問題的能力,為此我們要做好回顧,寫好總結。我們該怎么寫總結呢?下面是小編為大家收集的初二數學期末知識點總結,歡迎閱讀,希望大家能夠喜歡。

          初二數學期末知識點總結

          初二數學期末知識點總結1

            一、定義

            1、如果一個圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。我們也說這個圖形關于這條直線[成軸]對稱。

            2、把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱。這條直線叫做對稱軸,折疊后重合的點是對應點,叫做對應點。

            3、經過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線。軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。

            4、有兩邊相等的三角形叫做等腰三角形。

            5、三條邊都相等的三角形叫做等邊三角形。

            二、重點

            1、把成軸對稱的兩個圖形看成一個整體,它就是一個軸對稱圖形。

            2、把一個軸對稱圖形沿對稱軸分成兩個圖形,這兩個圖形關于這條軸對稱。

            3、垂直平分線的判定:與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

            4、垂直平分線的性質:線段垂直平分線上的點與這條線段兩個端點的距離相等。

            5、如何做對稱軸:如果兩個圖形成軸對稱,其對稱軸就是任何一對對應點所連線段的垂直平分線。因此,我們只要找到一對再對應點,作出連接它們的線段的垂直平分線就可以得到這個圖形的對稱軸。同樣,對于軸對稱圖形,只要找到任意一組對應點所連線段的垂直平分線,就得到此圖形的對稱軸。

            6、軸對稱圖形的性質:對稱軸方向和位置發生變化時,得到的圖形的方向和位置也會發生變化。由個平面圖形可以得到它關于一條直線成軸對稱的圖形,這個圖形與原圖形的形狀,大小完全相等。新圖形上的每一點,都是原圖形上的某一點關于直線的對稱點。連接任意一對對應點的線段被對稱軸垂直平分。

            7、等邊三角形的性質:等邊三角形的三個內角都相等,并且每一個角都等于60。

            8、等邊三角形的判定:等邊三角形的三個內角都相等,并且每一個角都等于60。三個角都相等的三角形是等邊三角形。有一個角是60的等腰三角形是等邊三角形。

            9、等腰三角形的性質:等腰三角形的兩個底角相等[等邊對等角]等腰三角形的頂角平分線,底邊上的中線,底邊上的高相互重合[三線合一][等腰三角形是軸對稱圖形,底邊上的中線(,底邊上的高,頂角平分線)所在直線就是它的對稱軸。

            等腰三角形兩腰上的高或中線相等。

            等腰三角形兩底角平分線相等。

            等腰三角形底邊上高的點到兩腰的距離之和等于底角到一腰的距離。

            等腰三角形頂角平分線,底邊上的高,底邊上的中線到兩腰的距離相等。]

            10、等腰三角形的判定方法:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等[等角對等邊]。

            [如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形。]

            11、直角三角形的性質之一:在直角三角形中,如果一個銳角等于30,那么它所對的直角邊等于斜邊的一半。

            12、在一個三角形中,如果兩條邊不等,那么它們所對的角也不等,大邊所對的角較大。

            三、注意

            1、(x,y)關于原點對稱(-x。-y)。關于x軸對稱(x,-y)。關于y軸對稱(-x,y)

            2、用坐標表示軸對稱。

          初二數學期末知識點總結2

            第十六章 分式

            一、定義:如果A、B表示兩個整式,并且B中含有字母,那么式子 叫做分式。

            二、分式基本性質:分式的分子與分母同乘或除以一個不等于0的整式,分式的值不變。

            三、分式計算:分式乘法法則:分式乘分式,用分子的積作為積的'分子,分母的積作為分母。

            分式除法法則:分式除以分式,把除式的分子、分母顛倒置后,與被除式相乘。

            分式乘方:分式乘方要把分子、分母分別乘方。

            四、整數指數冪:(1) (2)較小數的科學記數法;

            五、分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個解不是原分式方程的解。(這個解是增根,原方程無解)。

            第十七章 反比例函數

            一、形如y= (k為常數,k≠0)的函數稱為反比例函數;

            二、反比例函數的圖像屬于雙曲線;

            三、性質:當k>0時,雙曲線的兩支分別位于第一、第三象限,在每個象限內y值隨x值的增大而減小;

            當k<0時,雙曲線的兩支分別位于第二、第四象限,在每個象限內y值隨x值的增大而增大。

            第十八章 勾股定理

            一、勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么

            二、勾股定理逆定理:如果三角形三邊長a,b,c滿足 ,那么這個三角形是直角三角形。

            三、經過證明被確認正確的命題叫做定理。

            四、我們把題設、結論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)

            第十九章 四邊形

            一、平行四邊形:

            1、定義:有兩組對邊分別平行的四邊形叫做平行四邊形。

            2、性質:平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對角線互相平分。

            3、判定:(1)兩組對邊分別相等的四邊形是平行四邊形;

            (2)兩組對角分別相等的四邊形是平行四邊形;

            (3)對角線互相平分的四邊形是平行四邊形;

            (4)一組對邊平行且相等的四邊形是平行四邊形。

            (5)有兩組對邊分別平行的四邊形叫做平行四邊形。(定義)

            4、三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。

            二、矩形:

            1、定義:有一個角是直角的平行四邊形叫做矩形。

            2、性質:矩形的四個角都是直角;矩形的對角線平分且相等。

            3、判定:(1)有一個角是直角的平行四邊形叫做矩形。(定義)

            (2)對角線相等的平行四邊形是矩形。

            (3)有三個角是直角的四邊形是矩形。

            4、直角三角形斜邊上的中線等于斜邊的一半。

            三、菱形:

            1、定義:一組鄰邊相等的平行四邊形是菱形

            2、性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。

            3、判定:(1)一組鄰邊相等的平行四邊形是菱形。(定義)

            (2)對角線互相垂直的平行四邊形是菱形。

            (3)四條邊相等的四邊形是菱形。

            4、S菱形=底×高 S菱形= ab(a、b為兩條對角線)

            四、正方形:

            1、定義:有一組鄰邊相等的矩形是正方形。或有一個角是直角的菱形是正方形。

            2、性質:四條邊都相等,四個角都是直角;正方形既是矩形,又是菱形。

            3、判定:(1)鄰邊相等的矩形是正方形。

            (2)有一個角是直角的菱形是正方形。

            五、梯形:

            1、定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。

            2、等腰梯形定義:兩腰相等的梯形叫做等腰梯形。

            性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。

            判定:同一底上兩個角相等的梯形是等腰梯形;對角線相等的梯形是等腰梯形。

            3、梯形的中位線分別平行于上、下兩底,且等于上、下兩底和的一半。

            六、重心:

            1、線段的重心就是線段的中點。

            2、平行四邊形的重心是它的兩條對角線的交點。

            3、三角形的三條中線交于疑點,這一點就是三角形的重心。

            七、數學活動(教材115頁):

            1、折紙多60°、30°、15°的角證明方法(重點30°角)

            2、寬和長的比是 (約為0.618)的矩形叫做黃金矩形。

            第二十章 數據的分析

            一、加權平均數:計算公式(教材125頁。)

            二、中位數:將一組數據按照由小到大(大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數。

            三、眾數:一組數據中出現次數最多的數據就是這組數據的眾數(mode)。

            四、極差:一組數據中的最大數據與最小數據的差叫做這組數據的極差(range)。

            五、方差:

            1、計算公式: ( 表示 的平均數)

            2、性質:方差越大,數據的波動越大;方差越小,數據的波動越小,就越穩定。

            六、數據的收集與整理的步驟:

            1.收集數據 2.整理數據 3.描述數據 4.分析數據 5.撰寫調查報告

          【初二數學期末知識點總結】相關文章:

          初二數學期末知識點總結大全09-27

          初二數學必考知識點總結04-24

          初二數學全套知識點總結05-11

          初二數學重要知識點總結04-24

          初二數學知識點總結07-22

          初二數學下冊期末試題的總結03-19

          初二數學上冊期末總結09-15

          初二數學分式知識點總結04-25

          初二上數學知識點總結03-30

          初二數學知識點總結(15篇)11-04

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  亚洲日本欧美在线不卡黑配白 | 日本一二区中文字幕在线 | 亚欧美在线免费观看 | 日本在线中文字幕四区 | 在线看午夜福利网站 | 亚洲狠狠爱综合影院婷婷 |