高中數列公式總結

          時間:2021-12-07 10:09:30 總結 我要投稿
          • 相關推薦

          高中數列公式總結

            總結就是對一個時期的學習、工作或其完成情況進行一次全面系統的回顧和分析的書面材料,它可以有效鍛煉我們的語言組織能力,不妨坐下來好好寫寫總結吧。總結一般是怎么寫的呢?下面是小編為大家收集的高中數列公式總結,僅供參考,大家一起來看看吧!

          高中數列公式總結

            等比數列公式性質知識點

            1.等比數列的有關概念

            (1)定義:

            如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數(不為零),那么這個數列就叫做等比數列.這個常數叫做等比數列的公比,通常用字母q表示,定義的表達式為an+1/an=q(n∈N_,q為非零常數).

            (2)等比中項:

            如果a、G、b成等比數列,那么G叫做a與b的等比中項.即:G是a與b的等比中項a,G,b成等比數列G2=ab.

            2.等比數列的有關公式

            (1)通項公式:an=a1qn-1.

            3.等比數列{an}的常用性質

            (1)在等比數列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),則am·an=ap·aq=a.

            特別地,a1an=a2an-1=a3an-2=….

            (2)在公比為q的等比數列{an}中,數列am,am+k,am+2k,am+3k,…仍是等比數列,公比為qk;數列Sm,S2m-Sm,S3m-S2m,…仍是等比數列(此時q≠-1);an=amqn-m.

            4.等比數列的特征

            (1)從等比數列的定義看,等比數列的任意項都是非零的,公比q也是非零常數.

            (2)由an+1=qan,q≠0并不能立即斷言{an}為等比數列,還要驗證a1≠0.

            5.等比數列的前n項和Sn

            (1)等比數列的前n項和Sn是用錯位相減法求得的,注意這種思想方法在數列求和中的運用.

            (2)在運用等比數列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.

            等比數列知識點

            1.等比中項

            如果在a與b中間插入一個數G,使a,G,b成等比數列,那么G叫做a與b的等比中項。

            有關系:

            注:兩個非零同號的實數的等比中項有兩個,它們互為相反數,所以G2=ab是a,G,b三數成等比數列的必要不充分條件。

            2.等比數列通項公式

            an=a1_q’(n-1)(其中首項是a1,公比是q)

            an=Sn-S(n-1)(n≥2)

            前n項和

            當q≠1時,等比數列的前n項和的公式為

            Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)

            當q=1時,等比數列的前n項和的公式為

            Sn=na1

            3.等比數列前n項和與通項的關系

            an=a1=s1(n=1)

            an=sn-s(n-1)(n≥2)

            4.等比數列性質

            (1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;

            (2)在等比數列中,依次每k項之和仍成等比數列。

            (3)從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

            (4)等比中項:q、r、p成等比數列,則aq·ap=ar2,ar則為ap,aq等比中項。

            記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

            另外,一個各項均為正數的等比數列各項取同底指數冪后構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列。在這個意義下,我們說:一個正項等比數列與等差數列是“同構”的。

            (5)等比數列前n項之和Sn=a1(1-q’n)/(1-q)

            (6)任意兩項am,an的關系為an=am·q’(n-m)

            (7)在等比數列中,首項a1與公比q都不為零。

            注意:上述公式中a’n表示a的n次方。

            等比數列知識點總結

            等比數列:如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的公比,公比通常用字母q表示(q≠0)。

            1:等比數列通項公式:an=a1_q^(n-1);推廣式:an=am·q^(n-m);

            2:等比數列求和公式:等比求和:Sn=a1+a2+a3+.......+an

            ①當q≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

            ②當q=1時,Sn=n×a1(q=1)記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

            3:等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。

            4:性質:

            ①若m、n、p、q∈N,且m+n=p+q,則am·an=ap_aq;

            ②在等比數列中,依次每k項之和仍成等比數列.

            例題:設ak,al,am,an是等比數列中的第k、l、m、n項,若k+l=m+n,求證:ak_al=am_an

            證明:設等比數列的首項為a1,公比為q,則ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)

            所以:ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2),故:ak_al=am_an

            說明:這個例題是等比數列的一個重要性質,它在解題中常常會用到。它說明等比數列中距離兩端(首末兩項)距離等遠的兩項的乘積等于首末兩項的乘積,即:a(1+k)·a(n-k)=a1·an

            對于等差數列,同樣有:在等差數列中,距離兩端等這的兩項之和等于首末兩項之和。即:a(1+k)+a(n-k)=a1+an

          【高中數列公式總結】相關文章:

          數列公式及結論總結11-07

          數列求和公式方法總結12-08

          數列、數列的通項公式教案07-04

          數列通項公式方法總結12-07

          有關數列求和公式方法總結12-02

          等差數列公式10-02

          等比數列公式及推導10-04

          小學等差數列求和公式08-24

          求數列中幾種類型的通項公式總結11-22

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  亚洲五月激情在线 | 欧美亚洲精品免费 | 亚洲午夜久久久影院伊人 | 亚洲日本天堂在线 | 日本大片在线看黄a∨免费 亚洲美女天堂电影 | 日本乱子伦视频免费观看 |