高二數學必修五知識點總結

          時間:2022-02-08 10:19:28 總結 我要投稿

          高二數學必修五知識點總結

            總結是事后對某一階段的學習、工作或其完成情況加以回顧和分析的一種書面材料,它能使我們及時找出錯誤并改正,我想我們需要寫一份總結了吧。總結怎么寫才能發揮它的作用呢?下面是小編為大家收集的高二數學必修五知識點總結,歡迎閱讀與收藏。

          高二數學必修五知識點總結

            高二數學必修五知識點總結 篇1

            (一)解三角形:

            1、正弦定理:在中,、、分別為角、、的對邊,,則有

            (為的外接圓的半徑)

            2、正弦定理的變形公式:①,,;

            ②,,;③;

            3、三角形面積公式:.

            4、余弦定理:在中,有,推論:

            (二)數列:

            1.數列的有關概念:

            (1)數列:按照一定次序排列的一列數。數列是有序的。數列是定義在自然數N_它的有限子集{1,2,3,…,n}上的函數。

            (2)通項公式:數列的第n項an與n之間的函數關系用一個公式來表示,這個公式即是該數列的通項公式。如:。

            (3)遞推公式:已知數列{an}的第1項(或前幾項),且任一項an與他的前一項an-1(或前幾項)可以用一個公式來表示,這個公式即是該數列的遞推公式。

            如:。

            2.數列的表示方法:

            (1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點表示。

            (3)解析法:用通項公式表示。(4)遞推法:用遞推公式表示。

            3.數列的分類:

            4.數列{an}及前n項和之間的關系:

            高二數學必修五知識點總結 篇2

            不等關系及不等式知識點

            1.不等式的定義

            在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數學符號、、連接兩個數或代數式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.

            2.比較兩個實數的大小

            兩個實數的大小是用實數的運算性質來定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba

            3.不等式的性質

            (1)對稱性:ab

            (2)傳遞性:ab,ba

            (3)可加性:aa+cb+c,ab,ca+c

            (4)可乘性:ab,cacb0,c0bd;

            (5)可乘方:a0bn(nN,n

            (6)可開方:a0

            (nN,n2).

            注意:

            一個技巧

            作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.

            一種方法

            待定系數法:求代數式的范圍時,先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最后利用不等式的性質求出目標式的范圍.

            高二數學必修五知識點總結 篇3

            排列組合

            排列P------和順序有關

            組合C-------不牽涉到順序的問題

            排列分順序,組合不分

            例如把5本不同的書分給3個人,有幾種分法."排列"

            把5本書分給3個人,有幾種分法"組合"

            1.排列及計算公式

            從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號p(n,m)表示.

            p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規定0!=1).

            2.組合及計算公式

            從n個不同元素中,任取m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數.用符號

            c(n,m)表示.

            c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);

            3.其他排列與組合公式

            從n個元素中取出r個元素的循環排列數=p(n,r)/r=n!/r(n-r)!.

            n個元素被分成k類,每類的個數分別是n1,n2,...nk這n個元素的全排列數為

            n!/(n1!_2!_.._k!).

            k類元素,每類的個數無限,從中取出m個元素的組合數為c(m+k-1,m).

            排列(Pnm(n為下標,m為上標))

            Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個n分別為上標和下標)=n!;0!=1;Pn1(n為下標1為上標)=n

            組合(Cnm(n為下標,m為上標))

            Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標和下標)=1;Cn1(n為下標1為上標)=n;Cnm=Cnn-m

            20xx-07-0813:30

            公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數R參與選擇的元素個數!-階乘,如9!=9________

            從N倒數r個,表達式應該為n_n-1)_n-2)..(n-r+1);

            因為從n到(n-r+1)個數為n-(n-r+1)=r

            高二數學必修五知識點總結 篇4

            1.等差數列通項公式

            an=a1+(n-1)d

            n=1時a1=S1

            n≥2時an=Sn-Sn-1

            an=kn+b(k,b為常數)推導過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b

            2.等差中項

            由三個數a,A,b組成的等差數列可以堪稱最簡單的等差數列。這時,A叫做a與b的等差中項(arithmeticmean)。

            有關系:A=(a+b)÷2

            3.前n項和

            倒序相加法推導前n項和公式:

            Sn=a1+a2+a3+·····+an

            =a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

            Sn=an+an-1+an-2+······+a1

            =an+(an-d)+(an-2d)+······+[an-(n-1)d]②

            由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)

            ∴Sn=n(a1+an)÷2

            等差數列的前n項和等于首末兩項的和與項數乘積的一半:

            Sn=n(a1+an)÷2=na1+n(n-1)d÷2

            Sn=dn2÷2+n(a1-d÷2)

            亦可得

            a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

            an=2sn÷n-a1

            有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

            4.等差數列性質

            一、任意兩項am,an的`關系為:

            an=am+(n-m)d

            它可以看作等差數列廣義的通項公式。

            二、從等差數列的定義、通項公式,前n項和公式還可推出:

            a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N

            三、若m,n,p,q∈N_且m+n=p+q,則有am+an=ap+aq

            四、對任意的k∈N_有

            Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數列。

            高二數學必修五知識點總結 篇5

            1.數列的函數理解:

            ①數列是一種特殊的函數。其特殊性主要表現在其定義域和值域上。數列可以看作一個定義域為正整數集N_其有限子集{1,2,3,…,n}的函數,其中的{1,2,3,…,n}不能省略。②用函數的觀點認識數列是重要的思想方法,一般情況下函數有三種表示方法,數列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數列和以遞推公式給出數列。③函數不一定有解析式,同樣數列也并非都有通項公式。

            2.通項公式:數列的第N項an與項的序數n之間的關系可以用一個公式an=f(n)來表示,這個公式就叫做這個數列的通項公式(注:通項公式不)。

            數列通項公式的特點:

            (1)有些數列的通項公式可以有不同形式,即不。

            (2)有些數列沒有通項公式(如:素數由小到大排成一列2,3,5,7,11,...)。

            3.遞推公式:如果數列{an}的第n項與它前一項或幾項的關系可以用一個式子來表示,那么這個公式叫做這個數列的遞推公式。

            數列遞推公式特點:

            (1)有些數列的遞推公式可以有不同形式,即不。

            (2)有些數列沒有遞推公式。

            有遞推公式不一定有通項公式。

            高二數學必修五知識點總結 篇6

            數列

            1、數列的定義及數列的通項公式:

            ① an?f(n),數列是定義域為N

            的函數f(n),當n依次取1,2,???時的一列函數值② i。歸納法

            若S0?0,則an不分段;若S0?0,則an分段iii。若an?1?pan?q,則可設an?1?m?p(an?m)解得m,得等比數列?an?m?

            ?Sn?f(an)

            iv。若Sn?f(an),先求a

            1?得到關于an?1和an的遞推關系式

            S?f(a)n?1?n?1?Sn?2an?1

            例如:Sn?2an?1先求a1,再構造方程組:??(下減上)an?1?2an?1?2an

            ?Sn?1?2an?1?1

            2、等差數列:

            ①定義:a

            n?1?an=d(常數),證明數列是等差數列的重要工具。 ②通項d?0時,an為關于n的一次函數;

            d>0時,an為單調遞增數列;d<0時,a

            n為單調遞減數列。

            n(n?1)2

            ③前n?na1?

            d,

            d?0時,Sn是關于n的不含常數項的一元二次函數,反之也成立。

            ④性質:ii。若?an?為等差數列,則am,am?k,am?2k,…仍為等差數列。 iii。若?an?為等差數列,則Sn,S2n?Sn,S3n?S2n,…仍為等差數列。 iv若A為a,b的等差中項,則有A?3。等比數列:

            ①定義:

            an?1an

            ?q(常數),是證明數列是等比數列的重要工具。

            a?b2

            ②通項時為常數列)。

            ③。前n項和

            需特別注意,公比為字母時要討論。

            高二數學必修五知識點總結 篇7

            ●不等式

            1、不等式你會解么?你會解么?如果是寫解集不要忘記寫成集合形式!

            2、的解集是(1,3),那么的解集是什么?

            3、兩類恒成立問題圖象法——恒成立,則=?

            ★★★★分離變量法——在[1,3]恒成立,則=?(必考題)

            4、線性規劃問題

            (1)可行域怎么作(一定要用直尺和鉛筆)定界——定域——邊界

            (2)目標函數改寫:(注意分析截距與z的關系)

            (3)平行直線系去畫

            5、基本不等式的形式和變形形式

            如a,b為正數,a,b滿足,則ab的范圍是

            6、運用基本不等式求最值要注意:一正二定三相等!

            如的最小值是的最小值(不要忘記交代是什么時候取到=!!)

            一個非常重要的函數——對勾函數的圖象是什么?

            運用對勾函數來處理下面問題的最小值是

            7、★★兩種題型:

            和——倒數和(1的代換),如x,y為正數,且,求的最小值?

            和——積(直接用基本不等式),如x,y為正數,,則的范圍是?

            不要忘記x,xy,x2+y2這三者的關系!如x,y為正數,,則的范圍是?

          【高二數學必修五知識點總結】相關文章:

          高一數學必修一知識點總結08-09

          高中數學必修四知識點總結12-03

          高二外研社必修五作文11-04

          高二語文必修五作文07-16

          數學必修五教學設計、12-29

          高二必修五語文材料作文07-28

          高二語文必修3《蜀道難》知識點12-27

          高二語文必修五作文3篇08-24

          高二語文必修4柳永詞兩首知識點11-15

          高二語文必修5《滕王閣序》知識點整理12-27

          国产精品好爽好紧好大_亚洲男人综合久久综合_欧美福利电影a在线播放www_国产精品99久久精品无码

                  亚洲人成网站a在线播放 | 亚洲国产精品一区二区尤物 | 亚洲中文字幕在线一区二区三区 | 一区二区三区乱码国产在线 | 亚洲免费在线观看AV | 亚洲第一r级在线视频 |